DOI QR코드

DOI QR Code

염화칼슘에 의한 스트로브잣나무의 생장 및 생리반응

Growth and Physiological Responses of Pinus strobus to CaCl2

  • 제선미 (국립산림과학원 산림보전부) ;
  • 김선희 (국립산림과학원 산림보전부)
  • Je, Sun-Mi (Dept. of Forest Conservation, National Institute of Forest Science) ;
  • Kim, Sun-Hee (Dept. of Forest Conservation, National Institute of Forest Science)
  • 투고 : 2017.01.10
  • 심사 : 2017.04.24
  • 발행 : 2017.06.30

초록

이 연구는 염화칼슘이 스트로브잣나무(Pinus strobus)의 생장 및 생리반응에 미치는 영향과 그 중 염화칼슘에 민감하게 반응하는 변수를 알아보고자 실시되었다. 이를 위해 염화칼슘에 처리에 대한 스트로브잣나무의 가시적 피해, 근원경 생장, 식물체 내 수분함수량, 엽록소함량과 구성, 광계 II의 최대 활성, 전자전달율의 변화를 분석하였다. 염화칼슘 처리는 개엽하기 전에 염화칼슘 0.5, 1.0, 3.0% 수용액을 근권부에 관수하였다. 염화칼슘 처리에 의한 가시적 피해로 잎의 갈변과 탈락, 잎 마름이 나타났으며, 이러한 피해 양상은 염화칼슘 농도가 높고, 처리 기간이 길어질수록 가중되어 나타났다. 근원경(밑둥지름) 생장량 그리고 잎의 수분함수량의 감소는 염화칼슘 1.0%와 3.0% 처리에서 유의하게 나타났다. 광색소인 총엽록소함량, 광계 II의 최대 활성, 전자전달율은 염화칼슘 3.0% 처리에서 대조구 대비 유의한 감소를 보였다. 결론적으로 염화칼슘 처리는 엽 내 수분상태에 영향을 주었고, 광수확 능력과 광화학반응 능력의 감소를 초래하였다. 또한, 염화칼슘 농도와 생장 및 생리반응 변수들 간의 상호 연관성을 분석한 결과, 잎의 수분함수량과 엽록소 a와 b의 비율의 회귀식 결정계수가 상대적으로 높아, 스트로브잣나무의 염화칼슘 피해 수준에 민감하게 반응하는 변수로 나타났다.

The present study aimed to investigate the effect of calcium chloride($CaCl_2$) on the growth and physiological responses of Pinus strobus and the variables that are sensitive to $CaCl_2$. Thus, changes in the visible damage, growth of root collar diameter, plant water content, chlorophyll content and composition, maximum PS II photochemical efficiency, and electron transport rate of P. strobus was analyzed in relation to treatment witih $CaCl_2$. A $CaCl_2$ solution(0.5, 1.0 and 3.0%) was applied in the root zone before leaf unfolding. Leaf browning, defoliation, and drying were observed with $CaCl_2$ application and this pattern was aggravated as the $CaCl_2$ concentration increased and the treatment period became longer. The decrease of growth in root collar diameter and height and leaf water content were observed at $CaCl_2$ 1.0% and 3.0%. The total chlorophyll content indicated that photopigment, PS II photochemical efficiency and electron transport rate significantly decreased at $CaCl_2$ 3.0%. In conclusion, $CaCl_2$ affected leaf water content and led to a decrease of capability in light harvesting and photochemical responses. Also, as a result of the correlation between calcium chloride concentration and growth and physiological response parameters, it was found that the leaf moisture content and the ratio of chlorophyll a and b reflect the damage level of calcium chloride sensitively because their coefficient of determinations were relatively high.

키워드

참고문헌

  1. Arnon, D. I.(1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Betula vulgaris. Plant Physiology 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  2. Aziz, I. and M. A. Khan(2001) Effect of seawater on the growth, ion content and water potential of Rhizophora mucronan Lam. Journal of Plant Research 114: 369-373. https://doi.org/10.1007/PL00013998
  3. Conroy, J. P., J. M. Virgona, R. M. Smillie and E. W. Barlow(1988) Influence of drought acclimation and $CO_2$ enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought. Plant Physiology 186: 1108-1115.
  4. Czerniawska-Kusza, I., G. Kusza and M. Duzynski(2004) Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environmental Toxicology 19(4): 296-301. https://doi.org/10.1002/tox.20037
  5. Fostad, O. and P. A. Pedersen(1997) Vitality, variation, and causes of decline of trees in Oslo center(Norway). Journal of Arboriculture 23: 155-165.
  6. Galuszka, A., Z. M. Migaszewski, R. Podlaski, S. Dolęgowska and A. Michalik(2011) The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental Monitoring Assessment 176: 451-464. https://doi.org/10.1007/s10661-010-1596-z
  7. Geissler, N., S. Hussin and H. W. Koyro(2009) Interactive effects of NaCl salinity and elevated atmospheric $CO_2$ concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany 65: 220-231. https://doi.org/10.1016/j.envexpbot.2008.11.001
  8. Goodrich, B. A. and W. R. Jacobi(2012) Foliar damage, ion content, and mortality rate of five common roadside tree species treated with soil applications of magnesium chloride. Water, Air, & Soil Pollution 223: 847-862. https://doi.org/10.1007/s11270-011-0907-5
  9. Goodrich, B. A., R. D. Koski and W. R. Jacobi(2009) Condition of soils and vegetation along roads treated with magnesium chloride for dust suppression. Water, Air and Soil Pollution 198: 165-188. https://doi.org/10.1007/s11270-008-9835-4
  10. Hagemann, M. and N. Erdmann(1997) Environmental stresses. In: Rai, A. K. (Ed.), Cyanobacterial Nitrogen Metabolism and Environmental Biotechnology. Springer, Heidelberg, Narosa Publishing House, New Delhi, India, pp. 156-221.
  11. Hall, R., G. Hofstra and G. P. Lumis(1972) Effects of deicing salt on eastern white pine: Foliar injury, growth suppression and seasonal changes in foliar concentrations of sodium and chloride. Canadian Journal of Forest Research 2: 244-249. https://doi.org/10.1139/x72-040
  12. Je, S. M. and S. H. Kim(2016) Effect of $CaCl_2$ on gas exchange and stomatal responses in the leaves of Prunus serrulata. Journal of Korean Forest Society 105(3): 303-308. https://doi.org/10.14578/jkfs.2016.105.3.303
  13. Ju, J. H., J. Y. Park, H. Xu, E. Y. Lee, K. H. Hyun, J. S. Jung, E. Y. Choi and Y. H. Yoon(2016) Growth and physiological response of three evergreen shrubs to de-icing salt($CaCl_2$) at different concentrations in winter. Journal of the Korean Institute of Landscape Architecture 44(2): 122-129. https://doi.org/10.9715/KILA.2016.44.2.122
  14. Kayama, M., A. M. Quoreshi, S. Kitaoka, Y. Kitahashi, Y. Sakamoto, Y. Maruyama, M. Kitao and T. Koike(2003) Effects of deicing salt on the vitality and health of two spruce species, Picea abies(Karst.) and Picea glehnii(Masters) planted along roadsides in northern Japan. Environmental Pollution 124(1): 127-137. https://doi.org/10.1016/S0269-7491(02)00415-3
  15. Kitao, M., H. Tobita, H. Utsugi, M. Komatsu, S. Kitaoka, Y. Maruyama and T. Koike(2012) Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce(Picea glehnii) seedlings grown under elevated $CO_2$ concentration assessed by chlorophyll fluorescence measurements. Tree Physiology 32:(8) 998-1007. https://doi.org/10.1093/treephys/tps048
  16. Kwon, M. Y., S. H. Kim and J. H. Sung(2014) The responses of growth and physiological traits of Acer triflorum on calcium chloride($CaCl_2$) concentration. Korean Journal of Environment and Ecology 28(5): 500-509. https://doi.org/10.13047/KJEE.2014.28.5.500
  17. Lacerda, C. F., J. Cambraia, M. A. Oliva, H. A. Ruiz and J. T. Prisco(2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany 49(2): 107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  18. Marschner, P.(2012) Marschner's Mineral Nutrition of Higher Plants, Ed 3. San Diego: Academic Press.
  19. Meloni, D. A., M. A. Oliva, H. A. Ruiz and C. A. Martinez(2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition 24: 599-612. https://doi.org/10.1081/PLN-100104983
  20. Nakajima, H., K. Hara, Y. Yamamoto and K. Itoh(2015) Effects of Cu on the content of chlorophylls and secondary metabolites in the CU-hyperaccumulator lichen Stereocaulon japonicum. Ecotoxicology and Environmental Safety 113: 477-482. https://doi.org/10.1016/j.ecoenv.2014.12.038
  21. Percival, G. C.(2005) Identification of foliar salt tolerance of woody perennials using chlorophyll dluorescence. HortScience 40(6): 1892-1897.
  22. Stepien, P. and G. Klobus(2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum 50(4): 610-616. https://doi.org/10.1007/s10535-006-0096-z
  23. Sung, J. H., S. M. Je, S. H. Kim and Y. K. Kim(2009) Effect of calcium chloride($CaCl_2$) on the characteristics of photosynthetic apparatus, stomatal conductance, and fluorescence image of the leaves of Cornus kousa. Korean Journal of Agricultural and Forest Meteorology 11(4): 143-150. https://doi.org/10.5532/KJAFM.2009.11.4.143
  24. Sung, J. H., S. M. Je, S. -H. Kim and Y. -K. Kim(2010) Effect of calcium chloride($CaCl_2$) on chlorophyll fluorescence image and photosynthetic apparatus in the leaves of Prunus sargentii. Journal of Korean Forest Society 99(6): 922-928.
  25. Trahan, N. A. and C. M. Peterson(2007) Factors Impacting the Health of Roadside Vegetation. Colorado Department of Transportation Research Branch Final Report No., CDOTDTD-R-2005-12.
  26. Viskari, E. -L. and L. Karenlampi(2000) Roadside scots pine as an indicator of deicing salt use -A comparative study from two consecutive winters. Water, Air and Soil Pollution 122(3): 405-419. https://doi.org/10.1023/A:1005235422943
  27. Walker, R., R., E. Torokfalvy and W. J. S. Downton(1982) Photosynthetic responses of the citrus varieties rangpur lime and etrog citron to salt treatment. Functional Plant Biology 9(6): 783-790.
  28. Wüsche, J. N., D. H. Greer, W. A. Laing and J. W. Palmer(2005) Physiological and biochemical leaf and tree responses to crop load in apple. Tree Physiology 25: 1253-1263. https://doi.org/10.1093/treephys/25.10.1253
  29. Zhang, X., B. Wollenweber, D. Jiang, F. Liu and J. Zhao(2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany 59(4): 839-848. https://doi.org/10.1093/jxb/erm364
  30. http://data.ex.co.kr
  31. http://www.kma.go.kr
  32. http://www.nature.go.kr