• Title/Summary/Keyword: 얼굴 자세변화

Search Result 30, Processing Time 0.028 seconds

A Study on the Hair Line detection Using Feature Points Matching in Hair Beauty Fashion Design (헤어 뷰티 패션 디자인 선별을 위한 특징 점 정합을 이용한 헤어 라인 검출)

  • 송선희;나상동;배용근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.934-940
    • /
    • 2003
  • In this paper, hair beauty fashion design feature points detection system is proposed. A hair models and hair face is represented as a graph where the nodes are placed at facial feature points labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between hair models and the input image. This matching hair model works like random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background. pose variations and distorted by accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

A Study on Visual Perception based Emotion Recognition using Body-Activity Posture (사용자 행동 자세를 이용한 시각계 기반의 감정 인식 연구)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.305-314
    • /
    • 2011
  • Research into the visual perception of human emotion to recognize an intention has traditionally focused on emotions of facial expression. Recently researchers have turned to the more challenging field of emotional expressions through body posture or activity. Proposed work approaches recognition of basic emotional categories from body postures using neural model applied visual perception of neurophysiology. In keeping with information processing models of the visual cortex, this work constructs a biologically plausible hierarchy of neural detectors, which can discriminate 6 basic emotional states from static views of associated body postures of activity. The proposed model, which is tolerant to parameter variations, presents its possibility by evaluating against human test subjects on a set of body postures of activities.

Facial Feature Extraction using Nasal Masks from 3D Face Image (코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • This paper proposes a new method for facial feature extraction, and the method could be used to normalize face images for 3D face recognition. 3D images are much less sensitive than intensity images at a source of illumination, so it is possible to recognize people individually. But input face images may have variable poses such as rotating, Panning, and tilting. If these variances ire not considered, incorrect features could be extracted. And then, face recognition system result in bad matching. So it is necessary to normalize an input image in size and orientation. It is general to use geometrical facial features such as nose, eyes, and mouth in face image normalization steps. In particular, nose is the most prominent feature in 3D face image. So this paper describes a nose feature extraction method using 3D nasal masks that are similar to real nasal shape.

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance (Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.

Head Pose Classification using Multi-scale Block LBP and Random Forest (다중 크기 블록 지역 이진 패턴을 이용한 랜덤 포레스트 기반의 머리 방향 분류 기법)

  • Kang, Minjoo;Lee, Hayeon;Kang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.253-255
    • /
    • 2016
  • 본 논문에서는 다중 지역 이진 패턴(Multi-scale Bock LBP, MB-LBP) 특징과 랜덤 포레스트에 기반한 새로운 기법의 머리 방향 분류 기법을 제안한다. 제안 기법에서는 occlusion 과 조명의 변화에 강인한 분류 정확도를 얻기 위해서 랜덤화된 트리를 학습하는 것을 목표로 한다. 우선, 얼굴 이미지로부터 많은 MB-LBP 특징을 추출하고, 얼굴 영상들을 랜덤하게 입력하고 MB-LBP 크기 파라미터와 같은 랜덤 특징과 블록 좌표들을 사용하여 트리를 생성한다. 게다가 각 노드에서 정보 이득을 최대화 하는 트리의 내부 노드를 생성하기 위해서 uniform LBP 의 특성을 고려한 분할 함수를 개발한다. 랜덤화된 트리는 랜덤 포레스트에 포함되어 있으며 마지막 결정단계에서 Maximum-A-Posteriori criterion 으로 최종 결정을 한다. 실험 결과는 제안 기법이 다양한 조명, 자세, 표현, occlusion 상황에서 기존의 방법보다 개선된 성능으로 머리 방향을 분류 할 수 있음을 보여준다.

  • PDF

Enterprise Human Resource Management using Hybrid Recognition Technique (하이브리드 인식 기술을 이용한 전사적 인적자원관리)

  • Han, Jung-Soo;Lee, Jeong-Heon;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.333-338
    • /
    • 2012
  • Human resource management is bringing the various changes with the IT technology. In particular, if HRM is non-scientific method such as group management, physical plant, working hours constraints, personal contacts, etc, the current enterprise human resources management(e-HRM) appeared in the individual dimension management, virtual workspace (for example: smart work center, home work, etc.), working time flexibility and elasticity, computer-based statistical data and the scientific method of analysis and management has been a big difference in the sense. Therefore, depending on changes in the environment, companies have introduced a variety of techniques as RFID card, fingerprint time & attendance systems in order to build more efficient and strategic human resource management system. In this paper, time and attendance, access control management system was developed using multi camera for 2D and 3D face recognition technology-based for efficient enterprise human resource management. We had an issue with existing 2D-style face-recognition technology for lighting and the attitude, and got more than 90% recognition rate against the poor readability. In addition, 3D face recognition has computational complexities, so we could improve hybrid video recognition and the speed using 3D and 2D in parallel.

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Systematic Approach to The Extraction of Effective Region for Tongue Diagnosis (설진 유효 영역 추출의 시스템적 접근 방법)

  • Kim, Keun-Ho;Do, Jun-Hyeong;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.123-131
    • /
    • 2008
  • In Oriental medicine, the status of a tongue is the important indicator to diagnose the condition of one's health like the physiological and the clinicopathological changes of internal organs in a body. A tongue diagnosis is not only convenient but also non-invasive, and therefore widely used in Oriental medicine. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition a lot. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, segmenting a tongue region from a facial image captured and classifying tongue coating are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth are similar. The proposed method includes preprocessing, over-segmenting, detecting the edge with a local minimum over a shading area from the structure of a tongue, correcting local minima or detecting the edge with the greatest color difference, selecting one edge to correspond to a tongue shape, and smoothing edges, where preprocessing consists of down-sampling to reduce computation time, histogram equalization, and edge enhancement, which produces the region of a segmented tongue. Finally, the systematic procedure separated only a tongue region from a face image with a tongue, which was obtained from a digital tongue diagnosis system. Oriental medical doctors' evaluation for the results illustrated that the segmented region excluding a non-tongue region provides important information for the accurate diagnosis. The proposed method can be used for an objective and standardized diagnosis and for an u-Healthcare system.

Differentiation of Facial EMG Responses Induced by Positive and Negative Emotions in Children (긍정정서와 부정정서에 따른 아동의 안면근육반응 차이)

  • Jang Eun-Hye;Lim Hye-Jin;Lee Young-Chang;Chung Soon-Cheol;Sohn Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.8 no.2
    • /
    • pp.161-167
    • /
    • 2005
  • The study is to examine how facial EMG responses change when children experience a positive emotion(happiness) and a negative emotion(fear). It is to prove that the positive emotion(happiness) could be distinguishable from the negative emotion(fear) by the EMG responses. Audiovisual film clips were used for evoking the positive emotion(happiness) and the negative emotion(fear). 47 children (11-13 years old, 23 boys and 24 girls) participated in the study Facial EMG (right corrugator and orbicularis oris) was measured while children were experiencing the positive or negative emotion. Emotional assessment scale was used for measuring children's psychological responses. It showed more than $85\%$ appropriateness and 3.15, 4.04 effectiveness (5 scale) for happiness and fear, respectively. Facial EMG responses were significantly different between a resting state and a emotional state both in happiness and in fear (p<001). Result suggests that each emotion was distinguishable by corrugator and orbicularis oris responses. Specifically, corrugator was more activated in the positive emotion(happiness) than in the negative emotion(fear), whereas orbicularis oris was more activated in the negative emotion(fear) than in the positive emotion(fear).

  • PDF