DOI QR코드

DOI QR Code

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance

Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출

  • Received : 2010.08.06
  • Accepted : 2010.09.09
  • Published : 2010.11.30

Abstract

In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.

본 논문에서는 두 점의 집합들 사이의 기하학적 유사도에 근거한 Hausdorff 거리와 국지적 미세 텍스처의 분포에 근거한 Local Binary Pattern 거리가 융합된 새로운 측도를 도입함으로써 얼굴검출의 정확도를 높이는 방법을 제안하고 있다. 트레이닝 데이터를 이용해서 두 가지의 상이한 측도들을 정규화할 수 있는 매개변수와 최적화된 융합 비율을 찾는 방법을 보였다. 흔히 사용되는 얼굴 데이터베이스에 적용함으로써 제시된 방법이 두 가지 방법 각각을 이용한 방법보다 효과적이고 얼굴의 자세, 조명, 배경의 변화에 강인함을 보였다. 실험에서 사용된 데이터베이스의 경우 실제 얼굴의 위치와 검출된 얼굴의 위치 간의 평균거리오차가 LBP 방식의 47.9%, Hausdorff 방식의 22.8% 로 감소됨을 보였다.

Keywords

References

  1. P. Viola and M. J. Jones, "Robust real-time face detection," International Journal of Computer Vision, vol. 57, pp. 137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  2. M. P. Dubuisson and A. K. Jain, "A Modified Hausdorff Distance for Object Matching," Proc. Int'l Conf. Pattern Recognition, pp. 566-568, 1994.
  3. D.-G. Sim, O.-K. Kwon, R.-H. Park, "Object matching algorithms using robust Hasudorff distance measures," IEEE Trans. Image Processing, vol. 8, pp. 425-429, Mar. 1999 https://doi.org/10.1109/83.748897
  4. H. Yuankui, Y. Yiming, "Automatic target recognition of ISAR images based on Hausdorff distance," 1st Asian and Pacific Conference on Synthetic Aperture Radar, pp.477-479, Nov. 2007.
  5. Z. Zhou, B. Wang, "A modified Hausdorff distance using edge gradient for robust object matching," Int'l Conf. on Image Analysis and Signal Processing, pp. 250-254, 2009.
  6. 원보환, 구자영, "탄성변형 에너지 기반 Hausdorff 거리를 이용한 개선된 객체검출," 한국컴퓨터정보학회논문지, 제 12권, 제 2호. 71-76쪽, 2007년 5월.
  7. 조경식, 구자영, "국지적 패턴 유사도에 의해 수정된 Hausdorff 거리를 이용한 개선된 객체검출," 한국컴퓨터정보학회논문지, 제 12권, 제 6호. 147-152쪽, 2007 년 12월.
  8. Y. Gao. "Efficiently comparing face images using a modified Hausdorff distance," Vision, Image and Signal Processing, IEEE Proceedings, vol. 150, pp. 346-350, Dec. 2003. https://doi.org/10.1049/ip-vis:20030805
  9. C. Guang, W. Wang, and Q. Zhu "A face detector based on hausdorff distance," Int'l Conf. on Wireless Communications, Networking and Mobile Computing, IEEE Press, pp. 5259-5262. 2009.
  10. E. P. Vivek and N. Sudha, "Gray Hausdorff distance measure for comparing face images," IEEE Trans. Inf. Forensics and Security, vol. 1, no. 3, Sep. 2006.
  11. B. Takacs and H. Wechsler, "Fast searching of digital face libraries using binary image metrics." in Proc. ICPR, pp. 1235-1237, 1998.
  12. E. Sanchez-Nielsen, J. Lorenzo-Navarro, and M. Hernández-Tejera, "Increasing efficiency of Hausdorff approach for tracking real scenes with complex environments." in Proc. ICIAP, pp. 131-136, 2001.
  13. T. Ahonen, A. Hadid, and M. Pietikinen, "Face recognition with local binary patterns," ECCV, pp. 469–481, 2004.
  14. A. Hadid, M. Pietikinen, and T. Ahonen, "A discriminative feature space for detecting and recognizing faces," IEEE CVPR, pp. 797–804. June 2004.
  15. H. Jin et al. "Face Detection Using Improved LBP Under Bayesian Framework," Int'l Conf. on Image and Graphics (ICIG), 2004.
  16. C. Shan, S. Gong, and P. W. McOwan. "Robust facial expression recognition using local binary patterns," IEEE ICIP, 2005.
  17. 박성천, 구자영, "블록가중치의 최적화를 통해 개선된 LBP 기반의 표정인식," 한국컴퓨터정보학회논문지, 제14권, 제 11호. 73-79쪽, 2009년. 11월.
  18. B. Takács, "Comparing face Images using the modified Hausdorff distance," Pattern Recognition, 31(12): 1873-1881, 1998. https://doi.org/10.1016/S0031-3203(98)00076-4
  19. T. Ojala, M Pietikinen, and D. Harwood "A comparative study of texture measures with classification based on featured distribution," Pattern Recognition, Vol. 29, No. 1, 1996
  20. A. S. Georghiades, P. N. Belhumeur and D. J. Kriegman, : 'From few to many: illumination cone models for face recognition under differing pose and lighting' IEEE Trans. Pattern Anal. Mach. Intell., 23, (6), pp. 643–60. 2001. https://doi.org/10.1109/34.927464
  21. http://www.fei.edu.br/~cet/facedatabase.html