• Title/Summary/Keyword: 얼굴검출

Search Result 846, Processing Time 0.272 seconds

Component Based Face Detection for PC Camera (PC카메라 환경을 위한 컴포넌트 기반 얼굴 검출)

  • Cho, Chi-Young;Kim, Soo-Hwan
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.988-992
    • /
    • 2006
  • 본 논문은 PC카메라 환경에서 명암왜곡에 강인한 얼굴검출을 위한 컴포넌트 기반 얼굴검출 기법을 제시한다. 영상 내의 얼굴검출을 위해 에지(edge) 분석, 색상 분석, 형판정합(template matching), 신경망(Neural Network), PCA(Principal Component Analysis), LDA(Linear Discriminant Analysis) 등의 기법들이 사용되고 있고, 영상의 왜곡을 보정하기 위해 히스토그램 분석(평활화, 명세화), gamma correction, log transform 등의 영상 보정 방법이 사용되고 있다. 그러나 기존의 얼굴검출 방법과 영상보정 방법은 검출대상 객체의 부분적인 잡음 및 조명의 왜곡에 대처하기가 어려운 단점이 있다. 특히 PC카메라 환경에서 획득된 이미지와 같이 전면과 후면, 상하좌우에서 비추어지는 조명에 의해 검출 대상 객체의 일부분이 왜곡되는 상황이 발생될 경우 기존의 방법으로는 높은 얼굴 검출 성능을 기대할 수 없는 상황이 발생된다. 본 논문에서는 기울어진 얼굴 및 부분적으로 명암 왜곡된 얼굴을 효율적으로 검출할 수 있도록 얼굴의 좌우 대칭성을 고려한 가로방향의 대칭평균화로 얼굴검출을 위한 모델을 생성하여 얼굴검출에 사용한다. 이 방법은 부분적으로 명암왜곡된 얼굴이미지를 기존의 영상 보정기법을 적용한 것 보다 잘 표현하며, 얼굴이 아닌 후보는 비얼굴 이미지의 형상을 가지게 하는 특성이 있다.

  • PDF

Component and Knowledge Based Face Detection (얼굴 요소와 지식 기반 방법을 이용한 얼굴 검출)

  • 김진모;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.733-735
    • /
    • 2004
  • 본 논문에서는 얼굴 요소 기반의 얼굴 검출을 설명한다. 기존의 얼굴 전체 영역을 사용한 검출의 문제점과 얼굴 요소 기반의 얼굴 검출 방법의 차이점을 제시하며, 얼굴 전체 영역을 사용한 검출 방법에서 해결하기 어려운 문제점을 해결 하고자 한다. 얼굴 요소 기반의 얼굴 검출 방법은 Support Vector Machines (SVM)을 사용한다. 이 SVM을 사용하여 독립적으로 얼굴 요소를 찾으며, 각각의 얼굴 요소의 위치 정보를 이용한 지식 기반 방법을 이용하여 최종 얼굴 영역을 판별해 낸다 실험 결과에서 알 수 있듯이 얼굴 요소 기반 알고리즘은 얼굴 요소 가려짐 및 얼굴 요소의 유실에 강인함을 볼 수 있다.

  • PDF

A Study on Face Detection Performance Enhancement Using FLD (FLD를 이용한 얼굴 검출의 성능 향상을 위한 연구)

  • 남미영;이필규;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.225-230
    • /
    • 2004
  • 얼굴 검출은 디지털화된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재 유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 둥을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 재스쳐 등의 기초 기술로서 해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 둥의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 피셔의 선형 판별 분석을 이용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 포즈와, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 계층적인 방법으로 얼굴 검출을 수행하며, 휴리스틱한 방법, 피셔의 판별 분석을 이용하여 얼굴 검출을 수행하고 검색 영역의 축소와 선형 결정의 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다.

  • PDF

Face Extraction Method Using Edge and Skin Color Information (에지 정보와 얼굴 컬러 정보를 이용한 얼굴 검출 기법)

  • Kim, Jae-Hyup;Moon, Young-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.323-325
    • /
    • 2007
  • 본 논문에서는 저화질 영상에서의 실시간 얼굴 검출 기법에 대하여 제안한다. 제안하는 알고리즘은 입력 영상에 대하여 서로 다른 해상도의 영상을 구성하여 에지 정보를 이용하여 후보 얼굴 영역을 검출하며, 검출된 후보 영역들과 평균 얼굴을 이용한 템플릿과의 유사도를 측정하여 얼굴 영역의 위치를 결정한다. 검출된 얼굴 영역을 이용하여 얼굴의 피부 색상을 검출하며 이를 이용하여 초기 얼굴 윤곽을 결정한다. 초기 얼굴 윤곽으로부터 윤곽선의 반지름 분포와 얼굴 모델의 윤곽선 분포를 통해 최종얼굴 영역을 검출한다.

  • PDF

Development of Reduction Algorithm for Face Detection Error Using MCT and Neural Network (MCT와 신경망을 이용한 얼굴 오검출 감소 알고리즘 개발)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.700-703
    • /
    • 2016
  • OpenCV(Open Computer Vision)에서 제공하는 얼굴 검출 알고리즘은 Haar-like feature와 Cascade 방식을 이용하여 얼굴의 패턴을 찾아내 얼굴을 검출한다. 그러나 우연히 얼굴이 아닌 곳이 얼굴과 유사한 패턴일 경우, 얼굴로 인식하는 오류를 범하게 된다. 따라서 본 논문은 MCT(Modified Census Transform)와 신경망을 이용하여 잘못된 얼굴 검출 영역을 감소시키는 알고리즘을 제안한다. MCT는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하기 위하여 사용되고, 신경망 알고리즘은 Haar-Cascade 알고리즘의 얼굴 검출 방법으로 검출된 영역이 실제로 얼굴인지 아닌지를 판단하기 위하여 사용된다. 실험에서 사용된 6개의 데이터들은 인터넷에서 수집한 것으로서, Haar-Cascade 알고리즘의 얼굴 검출 방법으로 얼굴을 검출하였을 때 오검출된 영역이 1개 이상 존재한다. 본 논문에서 제안한 알고리즘으로 실험한 결과, Haar-Cascade 알고리즘의 얼굴 검출 방법에 비하여 오검출된 영역이 감소된 것을 확인할 수 있었다.

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

The Real-Time Face Detection and Tracking System based on Skin-Color (색상에 기반한 실시간 얼굴 검출 및 추적 시스템)

  • 임옥현;이우주;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.751-753
    • /
    • 2004
  • 본 논문에서 색상을 기반으로 한 알고리즘으로 얼굴을 검출하고 검출된 얼굴을 움직이는 Pan-Tilt 카메라 상에서 추적하는 방법을 제안하고자 한다. 얼굴 검출 알고리즘은 얼굴색의 특징인 피부색상을 이용하여 후보영역을 검출하고 후보 영역에서 얼굴형태의 특징인 타원 형태를 이용하여 최종적으로 얼굴을 검출하였다. 얼굴 추적은 영상에서 검출된 얼굴의 크기 및 위치 정보와 Pan-Tilt 카메라의 위치정보를 이용하여 항상 얼굴이 카메라의 중심에 위치하도록 하였다. 우리는 실제 실험에서 초당 10프레임 이상의 실시간 얼굴 검출 및 추적에 성공하였다.

  • PDF

딥러닝 기반 얼굴 검출, 랜드마크 검출 및 얼굴 인식 기술 연구 동향

  • Hwang, Won-Jun
    • Broadcasting and Media Magazine
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2017
  • 본 논문에서는 최근 각광받고 있는 Convolutional Neural Network(CNN)과 같은 딥러닝 기반의 얼굴 인식 연구 동향을 살펴 보고자 한다. 얼굴 인식은 입력 영상이 들어왔을 때 자동으로 누구인지 알아내는 알고리즘으로 크게 얼굴 검출, 얼굴 랜드마크 검출 및 얼굴 특징 추출로 나누어진다. 본 논문에서는 얼굴 검출, 랜드마크 검출 및 얼굴 특징 추출에 특화된 딥러닝 알고리즘을 하나씩 살펴보고 이들이 어떻게 발전해 왔는지를 확인하고자 한다. 특히, 딥러닝 기반 얼굴 인식 알고리즘들은 딥러닝 기반 물체 인식의 발전 방향과 유사하게 진행되어 오다가 최근에는 얼굴 인식에 특화된 딥러닝 아키텍처 형태로 발전하고 있다. 어떤 방향이 얼굴 인식에 더 도움이 될지에 대해서도 확인하고 실제로 어떤 문제를 해결하고 있는지 확인하고자 한다.

Improved Face Detection Algorithm Using Face Verification (얼굴 검증을 이용한 개선된 얼굴 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1334-1339
    • /
    • 2018
  • Viola & Jones's face detection algorithm is a typical face detection algorithm and shows excellent face detection performance. However, the Viola & Jones's algorithm in images including many faces generates undetected faces and wrong detected faces, such as false faces and duplicate detected faces, due to face diversity. This paper proposes an improved face detection algorithm using a face verification algorithm that eliminates the false detected faces generated from the Viola & Jones's algorithm. The proposed face verification algorithm verifies whether the detected face is valid by evaluating its size, its skin color in the designated area, its edges generated from eyes and mouth, and its duplicate detection. In the face verification experiment of 658 face images detected by the Viola & Jones's algorithm, the proposed face verification algorithm shows that all the face images created in the real person are verified.

A Study on Real-time Face Detection in Video (동영상에서 실시간 얼굴검출에 관한 연구)

  • Kim, Hyeong-Gyun;Bae, Yong-Guen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • This paper proposed Residual Image detection and Color Info using the face detection technique. The proposed technique was fast processing speed and high rate of face detection on the video. In addition, this technique is to detection error rate reduced through the calibration tasks for tilted face image. The first process is to extract target image from the transmitted video images. Next, extracted image processed by window rotated algorithm for detection of tilted face image. Feature extraction for face detection was used for AdaBoost algorithm.