Systematic Approach to The Extraction of Effective Region for Tongue Diagnosis

설진 유효 영역 추출의 시스템적 접근 방법

  • Published : 2008.11.25

Abstract

In Oriental medicine, the status of a tongue is the important indicator to diagnose the condition of one's health like the physiological and the clinicopathological changes of internal organs in a body. A tongue diagnosis is not only convenient but also non-invasive, and therefore widely used in Oriental medicine. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition a lot. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, segmenting a tongue region from a facial image captured and classifying tongue coating are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth are similar. The proposed method includes preprocessing, over-segmenting, detecting the edge with a local minimum over a shading area from the structure of a tongue, correcting local minima or detecting the edge with the greatest color difference, selecting one edge to correspond to a tongue shape, and smoothing edges, where preprocessing consists of down-sampling to reduce computation time, histogram equalization, and edge enhancement, which produces the region of a segmented tongue. Finally, the systematic procedure separated only a tongue region from a face image with a tongue, which was obtained from a digital tongue diagnosis system. Oriental medical doctors' evaluation for the results illustrated that the segmented region excluding a non-tongue region provides important information for the accurate diagnosis. The proposed method can be used for an objective and standardized diagnosis and for an u-Healthcare system.

한의학에서 혀의 상태는 인체 내부의 생리적 병리적 변화와 같은 건강 상태를 진단하는 중요한 지표로 활용된다. 혀의 상태를 진단하는 방법(설진)은 편리할 뿐 아니라 비침습적이므로, 한의학에서 널리 활용되고 있다. 하지만, 설진은 광원이나 환자의 자세, 의사의 건강 조건과 같은 검사 환경에 따라 많은 영향을 받는다. 객관적이고 표준화된 진단을 위한 자동 설진 시스템을 개발하기 위하여 촬영된 얼굴 영상으로부터 혀를 영역분할하고 설태를 분류하는 것은 필수적이지만 혀와 입술, 입 근처의 피부색이 서로 유사하므로 쉽지 않은 일이다. 제안된 방법은 전처리 과정과 영역분할, 혀의 구조로부터 발생하는 음영 영역의 지역 최소값 위치 검색, 지역 최소값의 교정, 컬러의 차이를 최대로 하는 위치를 찾는 컬러 경계면 탐색, 척의 기하적인 특성에 일치하는 경계면 선택, 경계면 평활화로 구성되어 있으며, 여기서 전처리 과정은 계산량의 감소를 위한 부 표본화, 히스토그램 평활화, 경계면 강화를 수행한다. 이러한 시스템적인 과정을 거치면, 영역분할된 혀를 획득할 수 있게 된다. 제안된 방법으로 분할된 영역은 초과적으로 혀가 아닌 영역을 제외해 낼 뿐 아니라 정확한 진단을 위해 중요한 정보를 제공함을 한의사의 진단 유효도 평가점수를 통해 확인할 수 있었다. 제안된 방법은 진단의 객관화와 표준화에 기여할 뿐만 아니라 u-Healthcare 시스템에도 활용 가능하다.

Keywords

References

  1. C.-C. Chiu, 'A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue,' Computer Methods and Programs in Biomedicine, Vol. 61, pp. 77-89, 2000 https://doi.org/10.1016/S0169-2607(99)00031-0
  2. X.-Q. Yue and Q. Liu, 'Analysis of studies on pattern recognition of tongue image in traditional Chinese medicine by computer technology, J. Chin. Integr. Med., Vol. 2, No. 5, pp. 326-329, 2004 https://doi.org/10.3736/jcim20040503
  3. B. Pang and D. Zhang, 'Computerized tongue diagnosis based on bayesian networks,' IEEE Trans. Biomedical Engineering, Vol. 51, No. 10, pp. 1803-1810, 2004 https://doi.org/10.1109/TBME.2004.831534
  4. H.Z. Zhang, K.Q. Wang, D. Zhang, B. Pang, and B. Huang, 'Computer aided tongue diagnosis system,' in Proc. the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6754-6757, Shanghai, China, 2005
  5. J. Wu, Y. Zhang, and J. Bai, 'Tongue area extraction in tongue diagnosis of traditional Chinese medicine,' in Proc. the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 4955-4957, Shanghai, China, 2005
  6. B. Pang, K. Wang, D. Zhang, and F. Zhang, 'On automated tongue image segmentation in Chinese medicine,' in ICPR, pp. 616-619, Vol. 1, 2002
  7. W. Li, C. Zhou, and Z. Zhang, 'The segmentation of the body of tongue based on the improved snake algorithm in traditional Chinese medicine,' in Proc. the 5th world congress on intelligent control and automation, pp. 15-19, 2004
  8. Y. Boykov and V. Kolmogorov, 'Computing geodesics and minimal surfaces via graph cuts,' in Proc. the 9th ICCV'03, pp. 26-33, 2003
  9. R. Zabih and V. Kolmogorov, 'Spatially coherent clustering using graph cuts,' in Proc. Computer Vision and Pattern Recognition, Vol. 2, pp. 437-444, 2004
  10. C. Rother, V. Kolmogorov, and A. Blake, 'GrabCut: interactive foreground extraction using iterated graph cuts,' ACM Trans. Graphics, Vol. 23, No. 3, pp. 309-314, 2004 https://doi.org/10.1145/1015706.1015720
  11. V. Vezhnevets and V. Konouchine, 'Grow-Cut - interactive multi-label N-D image segmentation,' in Proc. GraphiCon, pp. 150-156, 2005
  12. 남혜영, 김보람, 김욱현, 'Cylidrical metric을 이용한 블록기반 컬러 영상 분할', 전자공학회 논문지, 42권, 3호, pp. 7-14, 2005년
  13. 전영민, 차정희, '차량번호판 색상모델에 의한 번호판 영역분할 알고리즘', 전자공학회 논문지, 43권, 2호, pp. 21-32, 2006년
  14. 김제균, 디지털 설진 시스템의 개발, 경희대학교 학사논문, 수원, 2005년 11월
  15. R.C. Gonzalez and R.E. Woods, Digital Image Processing. Reading. MA, USA: Addison Wesley, pp. 166-248, 1993
  16. I.M. Bockstein, 'Color equalization method and its application to color image processing,' J. Opt. Soc. Amer. ,Vol. 3, No. 5, pp. 735-737, 1986 https://doi.org/10.1364/JOSAA.3.000735
  17. N. Liu and H. Yan, 'Colour image edge enhancement by two-channel process,' Electronics Letters, Vol. 30, No. 12, pp. 939-940, 1994 https://doi.org/10.1049/el:19940642
  18. P.F. Felzenszwalb, 'Efficient graph-based image segmentation,' International Journal of Computer Vision, Vol. 59, No. 2, pp. 167-181, 2004 https://doi.org/10.1023/B:VISI.0000022288.19776.77
  19. The theory of RGB to YUV conversion, http://elm-chan.org/works/yuv2rgb/report.html, May 6, 2002