• 제목/요약/키워드: 약한 인공지능

검색결과 174건 처리시간 0.029초

딥러닝 데이터 분석 기반의 에너지바우처 사용률 위험 가구 탐지 시스템 모델 연구 (A study on energy voucher usage rate risk household detection system model based on deep learning data analysis)

  • 김명안;박광영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.579-581
    • /
    • 2023
  • 에너지바우처 사업은 해마다 지원 예산의 규모를 증액하고 대상 가구원 특성 기준을 추가하는 등 지속적인 노력에도 불구하고 현재 에너지바우처 사용률은 전국 평균 약 81.8%로 여전히 목표치에는 못 미치는 상황이다. 본 논문에서는 2015년 최초 시행 이후부터 누적된 에너지바우처의 데이터와 에너지연료비(유가 정보, 지역 난방비 등), 기상청의 개방된 기상자료(기상특보, 예보), 한전의 실시간 전력 소비데이터 등 타 정보를 결합하여 인공지능 기반 데이터 분석으로 에너지바우처 사용률을 높여 사용률 저조 원인을 분석하고 이를 기반으로 위험 가구에 대한 사전 탐지와 관리를 위한 시스템을 제안한다. 향후, 제안 시스템의 현실적인 운영을 위해서는 사용률과 연관된 다양한 변수에 대한 분석과 시스템 성능평가가 필요하다.

바이오화학분야 연구 지원을 위한 논문 정보 수집 및 저장 시스템 개발 (Development of Biochemistry Research Publication Collecting and Archiving System)

  • 엄정호;김병정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.461-463
    • /
    • 2024
  • 최근 ESG 경영 등 환경에 대한 관심이 고조됨에 따라, 기존 화학산업을 대체할 수 있는 바이오화학산업이 성장하고 있다. 바이오화학산업규모는 연평균 성장률 10%로 2050년에는 화학산업 시장의 약 50% 정도를 차지할 것으로 예상될 정도로 유망 분야로 성장하고 있다. 본 논문에서는 신산업으로 성장하고 있는 바이오화학분야의 연구자들이 해당 분야의 유망 소재에 대하여 최신 연구정보를 빠르게 파악하고, 미래 유망 바이오화학물질의 발굴등 바이오화학 분야에 다양하게 활용할 수 있도록 관련 논문 정보를 수집, 저장, 검색할 수 있는 시스템을 개발하였다. 해당 수집 논문정보는 바이오화학산업분류와 연관된 바이오화학물질에 대한 정보와 연계되어 있어, 향후 인공지능 데이터 분석 등에 활용할 수 있는 데이터를 제공할 수 있을 것이라 기대한다.

조건부가치측정법(CVM)을 활용한 지능형 CCTV 플랫폼의 편익 추정 연구 (A Study on Valuation of Intelligent CCTV Platforms Using Contingent Valuation Method (CVM))

  • 김태균;심동녘
    • 산업융합연구
    • /
    • 제22권7호
    • /
    • pp.1-13
    • /
    • 2024
  • 전자정부 서비스 중 지능형 CCTV 관제 플랫폼은 인공지능을 활용하여 사람, 자동차 등 주요 객체가 CCTV상에 나타났을 경우, 관제요원에게 표출해 주는 선별 관제 서비스이다. 지능형 CCTV 관제 플랫폼을 운영할 경우 비상 상황 발생 시 신속한 대처가 가능하고 민원 해결 증가로 시민들의 삶의 질 제고가 가능할 것으로 기대를 모으고 있다. 이에 본 연구는 비(非)시장재화인 지능형 CCTV 관제 플랫폼의 편익을 선택실험기법인 조건부가치측정법(CVM)을 적용하여 가구당 평균 지불의사액을 추정하고, 이를 토대로 사회적 편익을 계산하였다. 분석 결과 가구의 평균 지불의사액은 연간 6,908원, 국가 전체의 경제적 편익은 연간 약 1,504억 원으로 추정되었다. 본 연구는 그간 환경·공공재의 적용되던 CVM의 적용 범위를 지능형 전자정부 서비스 분야로 확장한 점에서 학술적 의의가 있다. 나아가, 지능형 CCTV 관제 플랫폼 도입이 활발하게 논의되는 현 상황에서, 이에 대한 편익을 화폐가치로 추정하였다는 점에서 실무적 시사점을 지닌다.

기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝 (Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction)

  • Kim, Kyoung-jae
    • 지능정보연구
    • /
    • 제10권1호
    • /
    • pp.109-123
    • /
    • 2004
  • 기업부도예측은 재무와 경영의사결정문제에서의 주된 인공신경망 응용분야라 할 수 있다. 일반적으로 인공신경망은 이 분야에서 매우 좋은 성과를 보이는 것으로 알려져 있지만 종종 잡음이 심한 데이터에 대해서는 일관성 있고 예측가능한 성과를 보이지 못하는 경우가 있다. 특히 학습용 자료가 매우 많아서 학습시간과 자료수집비용이 과대한 경우에는 적절한 자료의 축소가 되지 않고는 인공신경망을 학습시키는 것이 불가능한 경우도 있다. 사례선택기법은 자료의 차원을 축약시켜 주며 직접적으로 자료를 축소시켜 주는 방법이다. 사례기반 학습기법에서는 이미 몇 연구가 사례선택기법의 필요성을 주장한 바 있으나 인공신경망 모형에서 사례선택기법의 필요성을 주장한 연구는 거의 없다. 본 연구에서는 기업부도예측을 위한 인공신경망 모형에서 유전자 알고리즘을 이용한 사례선택기법을 제안한다. 본 연구에서 유전자 알고리즘은 다층 인공신경망에서의 계층별 연결강도를 최적화하고, 동시에 학습에 적합한 사례를 선택한다. 유전자 알고리즘에 의해 결정된 계층별 연결강도는 역전파오류 학습기법에서 종종 발생하는 국부 최적해에 수렴하는 현상을 최소화해 줄 것으로 기대되고, 선택된 학습용 사례는 학습시간의 단축과 예측성과를 향상시켜 줄 것으로 기대된다. 본 연구에서는 제안한 모형과 주요 데이터 마이닝 기법들의 성과를 비교 연구한다. 실험결과, 제안된 방법이 인공신경망에서의 사례선택기법으로 유용한 것으로 나타났다.

  • PDF

딥 러닝과 파노라마 영상 스티칭 기법을 이용한 송전선 늘어짐 모니터링 시스템 (The Power Line Deflection Monitoring System using Panoramic Video Stitching and Deep Learning)

  • 박은수;김승환;이상순;류은석
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.13-24
    • /
    • 2020
  • 한국에는 전력 분배를 위하여 약 9백만 개의 전신주와 1.3백만 킬로미터의 송전선이 있다. 이러한 많은 전력 설비의 유지보수를 위해서는 많은 인력과 시간이 소요된다. 최근 인공지능을 사용한 여러 고장진단 기술들이 연구되어 오고 있기 때문에 본 논문에서는 송전선의 여러 요인으로 인한 늘어짐을 감지하기 위해 기존의 현장에서의 검증 방법이 아닌 카메라 시스템으로 촬영한 영상에서의 인공 지능 기술을 활용한 송전선 늘어짐 감지 시스템을 제안한다. 제안하는 시스템은 (i) 객체 탐지 시스템을 이용한 송전탑 감지 (ii) 동영상 촬영 데이터의 화질 저하 문제를 해결하기 위한 히스토그램 평활화 기법 (iii) 송전선 전체를 파악하기 위한 파노라마 영상 스티칭(iv) 송전선 탐지 알고리즘 적용 후 파노라마 영상 스티칭 기술을 이용한 늘어짐 판단 과정으로 진행된다. 본 논문에서는 각각의 과정들에 대한 설명 및 실험 결과를 보인다.

가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측 (A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function)

  • 김현진;정연승
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권3호
    • /
    • pp.123-128
    • /
    • 2019
  • 본 논문에서는 RCNN (recurrent convolution neural network) 계층 모델을 채택한 인공 지능에 기반을 둔 주가 예측을 제안한다. LSTM (long-term memory model) 기반 신경망은 시계열 데이터의 예측에 사용된다. 다른 한편, 컨볼루션 신경망은 데이터 필터링, 평균화 및 데이터 확장을 제공한다. 제안된 주가 예측에서는 위에서 언급 한 장점들을 RCNN 모델에서 결합하여 적용함으로써 다음날의 주가 종가를 예측한다. 그리고 최근의 시계열의 데이터를 강조하기 위해 커스텀 가중치 손실 함수가 채택되었다. 또한 시장의 상황을 반영하기 위해 주가 인덱스에 관련된 데이터를 입력으로 포함하였다. 제안된 주가 예측 방식은 실제 주가를 대상으로 한 실험에서 3.19%로 테스트 오차를 줄였으며, 다른 방법보다 약 19%의 성능 향상을 거둘 수 있었다.

딥러닝을 활용한 차량대기길이 추정모형 개발 (Development of Vehicle Queue Length Estimation Model Using Deep Learning)

  • 이용주;황재성;김수희;이철기
    • 한국ITS학회 논문지
    • /
    • 제17권2호
    • /
    • pp.39-57
    • /
    • 2018
  • 본 연구는 교통운영 개선에 필요한 빅데이터 및 인공지능 모델 개발의 일환으로서, 도시부의 링크통행시간 및 통과교통량 등 가용 데이터 등을 이용하여 교통변수로 활용도가 높은 차량대기길이와의 관계를 딥러닝(Deep Learning)을 통해 학습하고 추정하는 인공지능 모델을 구축하는 것을 목표로 하였다. 차량대기길이 추정모형은 데이터 분석결과를 토대로 하여 우선 차량대기길이의 링크 초과여부를 분류한 후 링크 초과 및 링크 미초과 상황에서의 차량대기길이 추정하는 3개의 모형으로 모델링하였다. 딥러닝 모형은 텐서플로우로 구현하였으며, 모든 모형은 DNN 구조로서 은닉층과 노드 개수를 다양화하여 학습 및 테스트 후 최소 오차를 나타내는 네트워크 구조를 선정하였다. 차량대기길이 링크 초과여부 분류 모형은 약 98%의 정확도를 나타냈으며, 미초과 모형은 15% 미만, 초과 모형은 5% 미만의 오차를 각각 나타내었다. 링크별 평균 오차는 12%로 도출되었다. 이를 기존 검지기 데이터 기반의 방식과 비교한 결과 오차가 약 39% 감소된 것으로 분석되었다.

인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가 (Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network)

  • 할리오나;허인욱;최승호;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.144-151
    • /
    • 2023
  • 이 연구에서는 동결융해 작용을 받는 다양한 콘크리트 배합에 대한 실험결과를 수집하여 데이터베이스를 구축하였다. 이를 바탕으로 동결융해 작용을 받는 콘크리트의 인공지능 기반 내구성능 평가모델을 개발하였으며, 회귀분석을 통해 상대동탄성계수 추정식을 도출하였다. 제안된 인공신경망 모델의 오류율과 결정계수는 각각 약 10.4%와 0.7이었으며, 회귀분석 추정식도 유사한 결과를 나타내었다. 따라서, 제안된 인공신경망 모델 및 회귀분석 추정식은 다양한 배합의 동결융해 작용을 받는 콘크리트에 대한 상대동탄성계수를 추정하는 데에 활용될 수 있을 것으로 판단된다.

소셜 빅데이터 기반 융합연구 동향 분석 (Trend Analysis of Convergence Research based on Social Big Data)

  • 노영희;김태연;정대근;이광희
    • 한국콘텐츠학회논문지
    • /
    • 제19권2호
    • /
    • pp.135-146
    • /
    • 2019
  • 본 연구는 4차 산업혁명과 함께 학제간 융합연구의 중요성이 부각되는 시점에서 소셜미디어 빅데이터 분석을 통하여 학술적 연구를 넘어 융합연구 전반에 대한 동향을 분석하고자 하였다. 이를 위해 텍스트마이닝 기법을 활용하여 소셜미디어에서 융합연구와 관련하여 2009년 1월부터 2018년 9월까지 약 10년간 게시된 글과 제목 등 약 150,000건을 수집하였으며, 이를 바탕으로 기간별로 워드클라우드와 네트워크 분석을 실시하였다. 분석결과, 각 기간별로 활발하게 진행된 연구분야는 2009년과 2010년에는 친환경, 2011년과 2012년에는 스마트, 2013년과 2014년에는 정보통신, 2015년과 2016년에는 로봇, 2017년과 2018년에는 인공지능이다. 또한 약 10년간 지속적으로 수행되고 있는 연구분야는 문화, 디자인, 화학, 나노, 바이오, 로봇, IT, 정보통신이다. 본 연구에서는 기간별 융합연구 동향을 파악하므로 써, 융합연구를 기획하고 있는 연구자들에게 연구방향을 설정하는데 있어 도움이 될 수 있다.

미국의 e-내비게이션 특허정보를 활용한 AI(인공지능) 기반 미래유망기술 탐색 (Exploring Future Promising Technologies Based on AI Using US e-Navigation Patent Information)

  • 송환빈
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2017년도 추계학술대회 논문집
    • /
    • pp.329-350
    • /
    • 2017
  • e-내비게이션은 유엔 산하 국제해사기구(IMO)가 2020년 국제적인 시행을 목표로 도입한 차세대 해양안전 종합관리시스템이다. 각종 해상 운항정보를 디지털화 해 선박 운항자에게 실시간 맞춤형 정보를 제공해 준다. 육상에서 차량용 내비게이션처럼 선박을 운항하는 데 운항항로, 날씨, 돌발 변수 등을 제공하면서 선박 사고를 줄이는 역할을 한다. 크루즈와 같은 큰 선박부터 작은 낚시용 선박에서도 이용이 가능하다. 해수부는 2020년 이후 약 1,000조원의 시장이 열릴 것으로 내다보고 있다. 진입 장벽이 높은 해상장비 시장에 우리나라도 ICT 강점을 바탕으로 디지털로 변화하는 이 시장에 주도권을 잡기 위해 노력중이다. 이를 위하여 e-내비게이션 분야의 미국 특허정보를 확보하여 DB화 하고, DB에서 제공하는 특허적 행위(M&A, 특허 매입, 신규 R&D 등)를 중심으로 하는 미래기술예측 분석틀을 활용하여 유망기술을 발굴하고자 한다. 미래기술예측 분석틀은 미래기술예측의 3대 주제를 (1) 미래 기술의 대상과 범위, (2) 미래 기술의 주인과 수혜자, (3) 미래 기술로의 투자 시점으로 설정하고, 3~10년까지의 근미래(Near Future Only), 측정 및 검증 가능한 미래(Data Oriented), 미래를 만드는 힘 있는 주체에게만(Activity Oriented) 집중하여 분석을 시도하고자 한다.

  • PDF