• Title/Summary/Keyword: 신경망분류기

검색결과 326건 처리시간 0.022초

Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법 (A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms)

  • Daewon Kim
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.15-26
    • /
    • 2003
  • 초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 그리고 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 많은 초음파 신호처리와 신호분류의 방법들이 제기 되었는데 그 중 가장 널리 쓰이는 방법은 신호들의 특징 공간상에서 그 특정의 성분들을 추출해내고 그 후 신경망 네트웍을 통한 분류 방법을 이용하여 초음파 신호들을 구별해 내는 방법이다. 이 논문은 기존의 신호 분류 체계와는 다른 대체 신호 분류법을 제시하고 있는데 이것은 최소 평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지되어진 초음파 비파괴 검사 신호 (ultrasonic nondestructive evaluation signal) 을 분류해내는데 쓰일 수가 있다 이 초음파 비파괴 검사 신호는 튜브내의 흠집이나 틈새로부터 감지되어진 신호일수도 있고 또는 튜브내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었고 여기서 나온 결과가 정리, 분석되었다 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용한 접근법으로 얻어진 결과가 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 정리, 분류되었고 적절한 분류 효과를 보인 결과가 이 논문에 제시되었다.

  • PDF

인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구 (Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network)

  • 이장규;우창기
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.

신경회로망을 이용한 와전류 결함 특성 평가 (Eddy Current Flaw Characterization Using Neural Networks)

  • 송성진;박홍준;신영길
    • 비파괴검사학회지
    • /
    • 제18권6호
    • /
    • pp.464-476
    • /
    • 1998
  • 원자력 발전소 증기발생기 전열관 검사에 사용되는 와전류 탐상에 있어 결함신호로부터 결함의 형상, 크기, 위치를 정확히 결정하는 것은 매우 중요한 문제 중의 하나이다. 이에 본 연구에서는 유한요소 해석으로 얻은 학습표본으로 훈련시킨 신경회로망을 이용해 이러한 와전류 결함신호의 역문제를 풀었다. 우선 4종류의 축대칭와 전류 결함신호를 총 216개 생성하고, 각각의 결함신호에 대해 24개씩의 와전류 특징을 추출한 후, 그 중에서 결함분석에 유용한 13개의 특징을 선택하였다. 그리고 이렇게 선별된 특징을 기반으로 4가지 형상의 결함에 대한 분류작업을 확률신경 회 로망에 의해 수행하고, 그 결과로 형상이 결정된 결함에 대한 크기산정을 역전파신경 회로망을 사용하여 실시하였다.

  • PDF

산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술 (Environmental Sound Classification for Selective Noise Cancellation in Industrial Sites)

  • 최현국;김상민;박호종
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.845-853
    • /
    • 2020
  • 본 논문에서는 산업현장에서의 선택적 소음 제거를 위한 환경 사운드 분류 기술을 제안한다. 산업현장에서의 소음은 작업자의 청력 손실의 주요 원인이 되며, 소음 문제를 해결하기 위한 소음 제거 기술이 널리 연구되고 있다. 그러나 기존 소음 제거 기술은 모든 소리를 구분 없이 차단하는 문제를 가지며, 모든 소음에 공통된 제거 방법을 적용하여 각 소음에 최적화된 소음 제거 성능을 보장할 수 없다. 이러한 문제를 해결하기 위해 사운드 종류에 따라 선택적 동작을 하는 소음 제거가 필요하고, 본 논문에서는 이를 위해 딥 러닝 기반의 환경 사운드 분류 기술을 제안한다. 제안 방법은 기존 오디오 특성인 멜-스펙트로그램의 한계를 극복하기 위해 새로운 특성으로서 멜-스펙트로그램 기반의 시간 변화 특성과 통계적 주파수 특성을 사용하며, 합성곱 신경망을 이용하여 특성을 모델링 한다. 제안하는 분류기를 사용하여 3가지 소음과 2가지 비소음으로 구성된 총 5가지 클래스로 사운드를 분류하였고, 제안하는 오디오 특성을 사용하여 기존 멜-스펙트로그램 특성을 사용할 때에 비하여 분류 정확도가 6.6% 포인트 향상되는 것을 확인하였다.

BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화 (LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI)

  • ;;임창균
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1171-1180
    • /
    • 2019
  • 감정은 인간의 상호 작용에서 중요한 역할을 하는 심리 생리학적 과정이다. 감성 컴퓨팅은 감정을 이해하고 조절할 수 있는 인간 인지 인공 지능의 개발하는데 중점을 둔다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환이 감정과 관련되어 있기 때문에 이러한 분야의 연구가 중요하다. 감정 인식에 대한 노력에도 불구하고, 비정상적인 EEG 신호로부터의 감정 검출은 여전히 높은 수준의 추상화를 요구하기에 정교한 학습 알고리즘이 필요하다. 이 논문에서는 EEG 기반으로 효율적인 감정 분류를 위해 LSTM을 위한 최적의 하이퍼파라미터를 파악하고자 다양한 실험을 수행하여 이를 분석한 결과를 제시하였다.

임상적 의사결정지원시스템에서 순차신경망 분류기를 이용한 급성백혈병 분류기법 (Acute Leukemia Classification Using Sequential Neural Network Classifier in Clinical Decision Support System)

  • 임선자;이반빈센트;권기룡;윤성대
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.174-185
    • /
    • 2020
  • Leukemia induced death has been listed in the top ten most dangerous mortality basis for human being. Some of the reason is due to slow decision-making process which caused suitable medical treatment cannot be applied on time. Therefore, good clinical decision support for acute leukemia type classification has become a necessity. In this paper, the author proposed a novel approach to perform acute leukemia type classification using sequential neural network classifier. Our experimental result only cover the first classification process which shows an excellent performance in differentiating normal and abnormal cells. Further development is needed to prove the effectiveness of second neural network classifier.

신체 장애우를 위한 얼굴 특징 추적을 이용한 실감형 게임 시스템 구현

  • 주진선;신윤희;김은이
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.475-478
    • /
    • 2006
  • 실감형 게임은 사람의 신체 움직임 및 오감을 최대한 반영한 리얼리티를 추구하는 전문적인 게임이다. 현재 개발된 실감형 게임들은 비 장애우를 대상으로 만들어 졌기 때문에 많은 움직임을 필요로 한다. 하지만 신체적 불편함을 가진 장애우들은 이러한 게임들을 이용하는데 어려움이 있다. 따라서 본 논문에서는 PC상에서 최소의 얼굴 움직임을 사용하여 수행할 수 있는 실감형 게임 시스템을 제안한다. 제안된 실감형 게임 시스템은 웹 카메라로부터 얻어진 영상에서 신경망 기반의 텍스쳐 분류기를 이용하여 눈 영역을 추출한다. 추출된 눈 영역은 Mean-shift 알고리즘을 이용하여 실시간으로 추적되어지고, 그 결과로 마우스의 움직임이 제어된다. 구현된 flash게임과 연동하여 게임을 눈의 움직임으로 제어 할 수 있다. 제안된 시스템의 효율성을 검증하기 위하여 장애우와 비 장애우로 분류하여 성능을 평가 하였다. 그 결과 제안된 시스템이 보다 편리하고 친숙하게 신체 장애우 에게 활용 될 수 있으며 복잡한 환경에서도 확실한 얼굴 추적을 통하여 실감형 게임 시스템을 실행 할 수 있음이 증명되었다.

  • PDF

검색 모델 성능 향상을 위한 Hard Negative 추출 및 False Negative 문제 완화 방법 (Improving Dense Retrieval Performance by Extracting Hard Negative and Mitigating False Negative Problem)

  • 박성흠;김홍진;황금하;권오욱;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.366-371
    • /
    • 2023
  • 신경망 기반의 검색 모델이 활발히 연구됨에 따라 효과적인 대조학습을 위한 다양한 네거티브 샘플링 방법이 제안되고 있다. 대표적으로, ANN전략은 하드 네거티브 샘플링 방법으로 질문에 대해 검색된 후보 문서들 중에서 정답 문서를 제외한 상위 후보 문서를 네거티브로 사용하여 검색 모델의 성능을 효과적으로 개선시킨다. 하지만 질문에 부착된 정답 문서를 통해 후보 문서를 네거티브로 구분하기 때문에 실제로 정답을 유추할 수 있는 후보 문서임에도 불구하고 네거티브로 분류되어 대조학습을 진행할 수 있다는 문제점이 있다. 이러한 가짜 네거티브 문제(False Negative Problem)는 학습과정에서 검색 모델을 혼란스럽게 하며 성능을 감소시킨다. 본 논문에서는 False Negative Problem를 분석하고 이를 완화시키기 위해 가짜 네거티브 분류기(False Negative Classifier)를 소개한다. 실험은 오픈 도메인 질의 응답 데이터셋인 Natural Question에서 진행되었으며 실제 False Negative를 확인하고 이를 판별하여 기존 성능보다 더 높은 성능을 얻을 수 있음을 보여준다.

  • PDF

데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율 (Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance)

  • 신승수;조휘연;김용혁
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.49-55
    • /
    • 2021
  • 최근에는 데이터베이스의 발달로 금융, 보안, 네트워크 등에서 생성된 많은 데이터가 저장 가능하며, 기계학습 기반 분류기를 통해 분석이 이루어지고 있다. 이 때 주로 야기되는 문제는 데이터 불균형으로, 학습 시 다수 범주의 데이터들로 과적합이 되어 분류 정확도가 떨어지는 경우가 발생한다. 이를 해결하기 위해 소수 범주의 데이터 수를 증가시키는 오버샘플링 전략이 주로 사용되며, 데이터 분포에 적합한 기법과 인자들을 다양하게 조절하는 과정이 필요하다. 이러한 과정의 개선을 위해 본 연구에서는 스모트와 생성적 적대 신경망 등 다양한 기법 기반의 오버샘플링 조합과 비율을 유전알고리즘을 통해 탐색하고 최적화 하는 전략을 제안한다. 제안된 전략과 단일 오버샘플링 기법으로 신용카드 사기 탐지 데이터를 샘플링 한 뒤, 각각의 데이터들로 학습한 분류기의 성능을 비교한다. 그 결과 유전알고리즘으로 기법별 비율을 탐색하여 최적화 한 전략의 성능이 기존 전략들 보다 우수했다.

DSP를 이용한 인공지능형 전력품질 진단기법 연구 (Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP)

  • 정교범;곽선근
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.116-124
    • /
    • 2009
  • 본 논문은 이산웨이블렛 변환, 푸리에 변환 및 실효값의 연산 결과를 이용하여 전력품질을 진단하는 인공지능형 진단기법을 제안한다. 제안된 진단기법을 채택한 인공지능형 전력품질 진단기는 과도현상, 순간전압강하, 순간전압상승, 순간정전 및 전고조파 외형률의 진단 및 분류가 가능하다. 신호처리를 위한 데이터 샘플링주파수는 15.36[kHz]가 사용되었으며 샘플링된 이산데이터는 이산웨이블렛변환, 고속푸리에변환, 실효값의 연산에 사용되어진다. 효율적인 인공지능형 전력품질 진단을 위해서, 진단하고자 하는 전력품질 요소에 맞추어 간단한 다층구조의 인공신경망을 설계하였다. 제안된 인공신경망은 C++ 언어로 프로그램되어 PSIM 시뮬레이션 연구에 사용되었으며, TI DSP 320C6713 마이크로프로세서를 사용한 MP PQ+256 하드웨어에서 검증하였다.