Eddy Current Flaw Characterization Using Neural Networks

신경회로망을 이용한 와전류 결함 특성 평가

  • Song, S.J. (School of Mechanical Eng., Sungkyunkwan Univ.) ;
  • Park, H.J. (R&D Center, Korean Inspection & Engineering Co.) ;
  • Shin, Y.K. (Dept. of Electrical Eng., Kunsan National Univ.)
  • 송성진 (성균관대학교 기계공학부) ;
  • 박홍준 (대한검사기술(주) 부설연구소) ;
  • 신영길 (군산대학교 전기공학과)
  • Published : 1998.12.30

Abstract

Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw.

원자력 발전소 증기발생기 전열관 검사에 사용되는 와전류 탐상에 있어 결함신호로부터 결함의 형상, 크기, 위치를 정확히 결정하는 것은 매우 중요한 문제 중의 하나이다. 이에 본 연구에서는 유한요소 해석으로 얻은 학습표본으로 훈련시킨 신경회로망을 이용해 이러한 와전류 결함신호의 역문제를 풀었다. 우선 4종류의 축대칭와 전류 결함신호를 총 216개 생성하고, 각각의 결함신호에 대해 24개씩의 와전류 특징을 추출한 후, 그 중에서 결함분석에 유용한 13개의 특징을 선택하였다. 그리고 이렇게 선별된 특징을 기반으로 4가지 형상의 결함에 대한 분류작업을 확률신경 회 로망에 의해 수행하고, 그 결과로 형상이 결정된 결함에 대한 크기산정을 역전파신경 회로망을 사용하여 실시하였다.

Keywords