• 제목/요약/키워드: 수학 내용 지식

검색결과 297건 처리시간 0.026초

정의 없이 정의 가르치기: 예비교사는 어떻게 자신이 배웠던 방식과 다르게 가르칠 수 있는가? (Teaching Definitions without Definitions: How Can Preservice Teachers Teach Differently?)

  • 이지현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권3호
    • /
    • pp.311-331
    • /
    • 2014
  • 예비교사들의 정의에 대한 도구적인 교수학적 내용지식을 관계적인 교수학적 내용 지식으로 변화하도록 하기 위하여, Kinach의 인지전략을 반영한 교수과제를 단계적으로 제시하였다. 연구자는 먼저 예비교사들이 '정의'와 '정의를 가르친다는 것'을 어떻게 이해하는지를 확인하였으며, 예비교사들의 통념에 도전함으로서 정의의 재발명이라는 새로운 교수방법을 포용할 수 있는 동인을 부여하였다. 예비교사의 PCK '성장' 과정은, 정의의 교수법에 대한 백지상태의 PCK를 수학교육이론으로 채우는 것이 아니라, 도구적 PCK를 확인하고 도전하며 변화 및 확장하였던 정반합(正反合)적 과정이었다. 이와 같은 사례는 교사의 지식 성장과 교사교육의 방법론에 대한 새로운 방향을 모색하는 데 기여할 수 있을 것이다.

  • PDF

수학교사의 지식에 관한 연구

  • 신현용;이종욱
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권1호
    • /
    • pp.297-308
    • /
    • 2004
  • 본 연구에서는 먼저, 수학교사에게 필요한 지식으로 교과, 학생, 교수학적 내용 지식이 필요함을 문헌을 통해 정리하였다. 교사의 지식과 수업 실제에 관한 세 편의 논문을 분석한 결과 교사의 수학에 대한 충분한 이해가 학생의 학습과 효과적인 교수에 절대적인 영향을 미친다고 주장할 수 없음을 알 수 있었다. 그러나 수학에 대한 바른 이해는 학생의 질문에 적절한 반응을 할 수 있도록 하며, 수업을 계획하고 교실에서 이루어지는 담화를 수학적으로 원활하게 조절할 수 있도록 도움을 줄 수도 있었다. 따라서 수학을 잘 아는 것이 효과적인 교수·학습을 보장하지는 못하지만, 교사가 잘 알지 못하는 것을 가르칠 수는 없다는 결론을 얻었다.

  • PDF

수학적 발문에 대한 초등학교 예비교사와 현직교사의 PCK 비교 (Comparison of Pre- and In-service Elementary School Teachers' PCK about Questioning in Mathematics Class)

  • 조누리;백석윤
    • 한국초등수학교육학회지
    • /
    • 제17권1호
    • /
    • pp.39-65
    • /
    • 2013
  • 본 연구에서는 수학적 발문과 관련하여 초등학교 예비교사와 현직교사의 PCK에 대한 비교 논의를 통해 수학수업 전문성 신장에 시사하는 바를 도출하고자 한다. 이를 위해 초등학교 예비교사와 현직교사에게 실시한 수학적 발문 관련 PCK에 대한 설문조사 분석 결과가 시사하는 바는 다음과 같다. 첫째, 수학 수업 현장의 관점에서 여전히 중요시되는 것은 교수 방법 관련 이론적 지식이 아니라 교수 경험과 교직 경력에 의하여 진화된 교수 방법 관련 실제적 지식이다. 둘째, 발문 관련 PCK면에서 볼 때 수학의 개념적 지식에 비해 절차적 지식의 지도에 있어서 발문 관련한 교사의 전문성 증진이 상대적으로 더 요구된다. 셋째, 수학 학습 지도시 바람직한 발문은 학습자의 오답에 대해서는 오답 배후의 오류체계를 고려한 발문이어야 하고, 학습 내용의 충실한 이해를 확인하기 위해서는 학습한 내용 주변 관련 내용과의 연계성을 고려한 발문이 되어야 한다. 본 연구는 설문조사에 의존하였기에 본 연구의 의도를 충족시키기 위해서는 수학 수업 현장에 밀착된 후속 연구가 필요하다.

  • PDF

초등 교사의 자연수 개념에 대한 교수학적 내용지식 분석 (An Analysis on the Pedagogical Content Knowledge of Natural number Concepts for Korean Elementary School Teachers)

  • 이명희;황우형
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제25권4호
    • /
    • pp.693-734
    • /
    • 2011
  • 연구의 목적은 자연수 개념에 대한 초등 교사들의 교수학적 내용지식을 분석하는 것이다. Shulman(1986b)은 교사의 지식을 이해하기 위한 도구를 개발하면서, 가르치는데 필요한 내용지식을 교과내용지식, 교육과정지식, 교수학적 내용지식의 세 가지로 구분하였고, 방정숙(2002)은 교사의 교수 방법에 포함되는 요소를 개인 요소와 사회 문화 요소로 구분하였다. 연구 문제는 (1) 초등 교사들은 자연수 개념에 대하여 어떤 교수학적 내용지식을 가지고 있는가, (2) 초등 교사들이 가지고 있는 자연수 개념에 대한 교수학적 내용지식에는 어떤 요소들이 포함되어 있는가의 두 가지이다. 연구 결과 (1) 초등 교사들은 자연수 개념에 대한 교수학적 내용지식의 세 가지 유형을 적절히 갖추고 있고, (2) 초등 교사들이 가지고 있는 자연수 개념에 대한 교수학적 내용지식에는 사회문화적 요소 보다는 개인 요소가 더 많이 포함되어 있다. 연구의 제안점으로는 (1) 보통의 현장 교사와 수학교육을 전공한 교사간의 비교 연구와 (2)자연수 개념에 대한 교실 활동에 대한 연구가 수행되기를 바란다.

중국 연변 수학 교과서의 실천과 종합응용 영역에 나타난 학습내용 분석 (Analysis of the contents of Practice and Synthetic Application area in Yanbian Textbooks)

  • 이대현
    • 한국학교수학회논문집
    • /
    • 제16권2호
    • /
    • pp.319-335
    • /
    • 2013
  • 본 연구에서는 중국의 수학과 '교육과정표준'에서 4개의 하위 영역 중 하나로 제시하고 있는 실천과 종합응용의 내용을 구현한 연변의 초등학교 수학 교과서 내용을 분석하였다. 이를 위해 연변교육출판사에서 출판한 12권의 초등학교 수학 교과서를 이용하여 실천과 종합응용 내용을 분석하였다. '교육과정표준'의 실천과 종합응용에서는 수학적 지식과 경험을 활용하고 응용하여 도전적이고 종합적인 문제를 해결하고, 주요 학습내용에 대한 이해와 연계를 체험하도록 제시하고 있다. 교과서 분석 결과, 실천활동에서는 상황적 배경이 대부분 교실 안에서 할 수 있는 활동으로 제한되어 있다는 것과 종합응용에서는 수학 지식의 상호연계성을 인식할 수 있는 활동이 적다는 한계를 보였다. 수학적 과정 면에서는 문제해결이 주를 이루고 있으며, 부분적으로 의사소통 활동이 제시되어 있었으며, 추론 활동이 적게 나타났다. 또 수학적 활동에서도 대부분 체험활동이 주를 이루고 있으며, 수학적 지식을 타 교과나 타 영역에 통합할 수 있는 통합적 활동이 부족한 것으로 나타났다.

  • PDF

내가 중학교 기하 영역의 교사용 지도서를 다시 쓴다면?

  • 최수일;김동원
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2008년도 제40회 전국수학교육연구대회 프로시딩
    • /
    • pp.17-28
    • /
    • 2008
  • 이 논문은 중학교 기하 영역의 수업에 대한 학생들의 성취도가 낮은 것을 관찰하고, 그에 대한 고민으로 교육과정을 분석하고, 수학교육의 질적 접근을 위한 교수 실험을 통해 실제 중학교 과정에서 운용되는 논증기하 교육의 문제점과 그 대안을 탐색하고자 하였다. 본 연구에서는 교사가 반드시 갖춰야 할 지식으로 Shulman(1986)이 제시한 교과 내용 지식과 교수학적 내용 지식, 그리고 교육과정 관련 지식을 받아들였으며, 중학교 기하 영역에서 이런 지식을 갖추기 위해 교사가 폭넓은 고민을 하여 수업의 개선점을 찾는 과정을 보여주고 있다. 연구를 통해서 학생들에게 명제를 지도할 때 주의할 점과 학습자에게 증명을 하도록 제시하는 방법상의 문제점, 그리고 이등변삼각형의 지도에서의 그 증명이 갖는 의미를 잘 이해하여 학생들에 증명 학습에 진정한 도움이 될 수 있는 방향을 탐색하였다. 그리고 절차만을 학습시키는 현행 작도 수업을 개선하기 위한 여러 시도와 등변사다리꼴의 학습에서와 같이 학생들이 수학 용어를 되돌아보는 수업이 필요성을 탐색하여, 많은 교수 실험을 통한 교육과정의 바람직한 개정을 제안하였다.

  • PDF

수학교사들의 내용지식이 학생들의 기하 평가에 미치는 영향

  • 고상숙;장훈
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권2호
    • /
    • pp.445-452
    • /
    • 2005
  • 본 연구는 중 고등학교 교사 50명에 대하여 기하 문제의 논증기하적 또는 해석기하적 문제해결 전략이 학생들의 평가에 어떤 영향을 미치는가를 조사한 것이다. 중학교에서 고등학교로 진학하면 도형의 문제에 대한 해석기하적인 문제해결 능력은 교육과정 상 대단히 중요하게 가르쳐야 할 내용이다. 유클리드 기하에 바탕을 둔 논증기하의 지식은 좌표평면의 도형을 방정식으로 나타내고 연구하는 해석기하의 기본이다. 그럼에도 불구하고 많은 학생들은 논증기하적 문제해결을 선호하는 반면 해석기하적 문제해결은 어려워한다. 또한 논증기하적 문제 형태에는 논증기하적 문제해결 전략, 해석기하적 문제 형태에는 해석기하적 문제해결 전략을 구사하는 경향을 보인다. 본 연구는 중 고등학교 교사들의 기하 문제에 대한 내용 지식이 학생 평가에 미치는 영향에 초점이 맞추어져 있다.

  • PDF

미국과 한국의 초등 교원 양성 과정에서 수학교육의 실제에 대한 수업 비교 연구 - 두 교수의 사례를 중심으로 - (A Comparative Study between the Lectures on the Practices of Mathematics Education in the Courses for Pre-service Elementary Teachers of Two University in United States and Korea - Focussed on two professors' cases -)

  • 서동엽
    • 한국초등수학교육학회지
    • /
    • 제14권3호
    • /
    • pp.547-565
    • /
    • 2010
  • 본 연구에서는 수학 교수학적 지식에 근거하여 미국 대학의 한 교수와 본 연구자의 초등수학교육 실제에 대한 강의를 비교해보았다. 많은 강의 주제와 수업 자료에서 공통점이 있었지만, 수업에서 강조하는 내용이나 수업 방법에서 많은 차이가 있었고, 이러한 차이는 두 대학의 교육과정이나 교과서 제도의 차이 등 제도적 이유에 기인하는 것도 있지만, 강의에서 초등학생들에 대한 이해를 강조하는가, 아니면 수학 교재의 이해를 강조하는가의 두 교수의 신념의 차이에서 비롯되는 것임을 확인하였다. 또한 이러한 차이는 수학 교수학적 지식의 측면에서 주로 내용과 학생에 대한 지식을 강조하는가, 아니면 내용과 교수에 대한 지식을 강조하는가의 차이와 관련된다. 이러한 두 가지 관점은 모두 초등수학교육에서는 중요한 주제라고 생각되며, 이러한 부분은 초등수학교육 강의의 개선에 기여할 수 있을 것으로 생각된다.

  • PDF

예 구성 활동을 통한 암묵적 지식의 현시에 관한 연구 (A Study on the Manifestation of Tacit Knowledge through Exemplification)

  • 이근범;이경화
    • 대한수학교육학회지:학교수학
    • /
    • 제18권3호
    • /
    • pp.571-587
    • /
    • 2016
  • 남진영(2008a)은 학생의 수학적 구조의 학습을 돕기 위한 교사의 역할을 암묵적 지식의 현시자라고 제안하였다. 그러나 아직 암묵적 지식의 현시의 의미를 구체화한 연구는 부족하다. 이에 본 연구에서는 Watson & Mason(2015)의 제안한 예 구성 활동이 그 목표, 내용, 방법 면에서 암묵적 지식을 현시하는 한 가지 방식임을 보임으로써, 암묵적 지식의 현시의 의미를 구체화하고자 하였다. 첫째, 예 구성 활동을 통한 암묵적 지식의 현시는 암묵적 영역에 있는 수학적 구조의 학습을 목표로 한다. 둘째, 예 구성 활동을 통한 암묵적 지식의 현시는 예를 통해 변이 속에서 불변적인 요소를 인식함으로써 암묵적 영역에 있는 수학적 구조를 교육하고자 한다. 셋째, 예 구성 활동을 통한 암묵적 지식의 현시는 명시적 지식을 창의적으로 구성해보는 활동, 활동에 대한 반성 과정, 사회적 상호작용을 통해 암묵적 영역에 있는 수학적 구조를 교육하고자 한다. 따라서 예 구성 활동은 그 목표, 내용, 방법 면에서 암묵적 지식을 현시하는 구체적인 한 수업 방식으로 볼 수 있다.

예비교사와 현직교사의 벡터 개념에 대한 이해: MKT 중심으로 (Pre-service and In-service Teachers' MKT about the Concept of Vector)

  • 윤현경;권오남
    • 대한수학교육학회지:학교수학
    • /
    • 제13권4호
    • /
    • pp.615-632
    • /
    • 2011
  • 본 연구는 벡터 개념에 대해 예비교사와 현직교사가 어떻게 이해하고 있는가를 밝히는 것을 연구의 목적으로 한다. 이에 벡터 개념에 대한 예비교사와 현직교사의 가르치기 위한 수학적 지식(MKT)을 알아보고자 한다. 설문지와 인터뷰 조사 결과 예비교사와 현직교사 모두 벡터 자체가 되는 것보다 벡터의 표현수단을 벡터로 보는 경향이 있었으며 예비교사는 상대적으로 벡터를 벡터공간의 원소로 보는 대학교 수준의 공통내용지식(CCK)으로 응답했던 반면, 현직교사는 가르치는 상황에 필요한 특수 내용지식(SCK)과 내용과 가르치는 것에 대한 지식(KCT)으로 응답하고 있었다. 본 연구는 이를 바탕으로 다음과 같은 벡터 개념에 대한 CCK, SCK, KCT와 수평내용지식 (Horizon content knowledge)을 도출하였다. 또한 논의된 벡터 개념에 대한 MKT를 바탕으로 MKT 하위 영역 간의 관련성에 대해서도 살펴보았다.

  • PDF