• Title/Summary/Keyword: 수학영재 수업

Search Result 125, Processing Time 0.023 seconds

A Model of Mathematics Classroom for Gifted Students Applying Social Constructivism (수학 영재 수업에서 사회적 구성주의 적용 방안)

  • Seo, Dong-Yeop
    • School Mathematics
    • /
    • v.7 no.3
    • /
    • pp.237-252
    • /
    • 2005
  • This study aims to present a model of mathematics classroom for gifted students by applying the social constructivism. An important function of good materials is promoting students' conjectures and discussions actively, and the model is appropriate to these kinds of materials. This model includes four stages, i. e. forming the subjective knowledge, objectifying, forming the objective knowledge, individual re-forming. And the four stages form a cycle working continuously on more progressive materials. This study presents an example of the classroom for fifteen students of grade 6 on the properties of multiples. Students performed so active investigations, and structured the con-tents learned effectively.

  • PDF

Analysis on the Sociomathematical norms in math gifted classroom according to the Teacher's belief (교사의 신념에 따른 수학영재교실의 사회수학적 규범 비교 분석)

  • Cho, Yoomi;Song, Sang Hun
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.3
    • /
    • pp.373-388
    • /
    • 2013
  • This paper is to investigate how two elementary school teacher's belief mathematics as educational content, and teaching and learning mathematics as a part of educational methodology, and what the two teachers believe towards gifted children and their education, and what the classes demonstrate and its effects on the sociomathematical norms. To investigate this matter, the study has been conducted with two teachers who have long years of experience in teaching gifted children, but fall into different belief categories. The results of the study show that teacher A falls into the following category: the essentiality of mathematics as 'traditional', teaching mathematics as 'blended', and learning mathematics as 'traditional'. In addition, teacher A views mathematically gifted children as autonomous researchers with low achievement and believes that the teacher is a learning assistant. On the other hand, teacher B falls into the following category: the essentiality of mathematics as 'non-traditional', teaching mathematics as 'non-traditional, and learning mathematics as 'non-traditional.' Also, teacher B views mathematically gifted children as autonomous researchers with high achievement and believes that the teacher is a learning guide. In the teacher A's class for gifted elementary school students, problem solving rule and the answers were considered as important factors and sociomathematical norms that valued difficult arithmetic operation were demonstrated However, in the teacher B's class for gifted elementary school students, sociomathematical norms that valued the process of problem solving, mathematical explanations and justification more than the answers were demonstrated. Based on the results, the implications regarding the education of mathematically gifted students were investigated.

  • PDF

Understanding of Classroom Culture of Gifted Youths in Secondary Mathematics (중등수학영재아들의 교실문화 이해)

  • Kang, Yun-Soo;Jung, Mi-Ra
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.3
    • /
    • pp.347-361
    • /
    • 2006
  • This research intends to understand classroom culture of gifted youths in secondary mathematics. For this purpose, we have observed ethnographically the mathematics classes of gifted youths for eight months at two Science Education Centers for Gifted Youths. We have collected qualitative data using the methods, participation observation, interviewing, video taping, recording, collecting assistant materials. And these data were closely connected and analyzed synthetically. From this, we found the followings; First, gifted youths in mathematics evaluate the academic abilities as the best standard for their friendship. Second, the gifted youths in secondary mathematics are under an obsession that they should act like gifted youths. Third, even though they know the merits of class type of inquiry and discussions, they didn't participate actively in those types of class. Forth, main differences of classes between Gifted Education Centers and general middle school come from the difference of class type, the roles of teachers and students.

  • PDF

The case analysis of Rummikub game redeveloped by gifted class using What-If-Not strategy (영재학급 학생들이 What-If-Not 전략을 사용하여 만든 변형 루미큐브 게임 사례 분석)

  • Lee, Dae Hee;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 2013
  • Problem posing activity of which a learner reinterprets an original problem via a new problem suggested, is a learning method which encourages an active participation and approves self-directed learning ability of the learner. Especially gifted students need to get used to a creative attitude to modify or reinterpret various mathematical materials found in everyday usual lives creatively in steady manner via such empirical experience beyond the question making level of the textbook. This paper verifies the possibility of lesson on question making strategy utilization for creativity development of gifted class, and analyzes various cases of students' trials to modify the rules of a board game called Rummikub in application of their own mathematics after learning What-If-Not strategy.

  • PDF

Schemes to incorporate key competencies for the gifted in the middle school math teaching (핵심역량에 기초한 중학교 수학 수업 방안 탐색 -수학 영재 수업을 중심으로-)

  • Choe, Seong Hyun;Park, Ji Hyun;Nam, Geum Cheon
    • Communications of Mathematical Education
    • /
    • v.27 no.2
    • /
    • pp.99-119
    • /
    • 2013
  • This study investigated the schemes to apply key competencies to middle school math teaching. Key competencies (KCs, hereafter), however, have been discussed only at the national-level general curriculum. Through the survey with mathematics educators, we selected key competencies that can be better developed through mathematics subject. We investigate ways to apply key competencies into math teaching and learning with the math-talented students who usually lack interpersonal skills and communication skills. Along with KC goals, we selected graphs (or graphing skills in math contents) as learning goals, and we designed and implemented competency-based instruction for the gifted. Through participant observation of math teaching and learning, we identified students' improvement in interpersonal skills and communication skills. We also identified students' skill development in other key competencies such as creativity, problem solving, information processing skills, etc., which can be developed through mathematics teaching and learning. Through this study, we found out that key competencies can be developed through mathematics teaching and we need in-depth studies on this matter.

Development and Utilization of Mathematics Teaching Materials for Gifted Class by the Use of Polyominoes and What if (not)? Strategy (폴리오미노에 What if (not)? 전략을 적용한 영재 학급용 수학 수업 소재 발굴과 활용)

  • Ku, Bon-Wang;Song, Sang-Hun
    • School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.175-187
    • /
    • 2011
  • The purpose of this study is to develop and utilize various kinds of mathematics teaching materials for gifted class in elementary school by utilizing polyominoes and a what-if-not strategy. Blokus is used to let students understand the characteristics of polyominoes, and omok is utilized to let them grasp interior point. Thus, the activities that utilized the new materials, blokus and omok, are developed to teach Pick's theorem. Besides, recreation activities were additionally prepared to provide education in an easy, intriguing and creative manner. The findings of the study is as follows: First, each of the materials was utilized in a different manner when the students engaged in basic and enrichment learning. Second, the mathematically gifted students were able to discover Pick's theorem in the course of utilizing the materials that contained recreational elements. Third, the students were taught to foster their problem-solving skills about area, girth and interior point by making use of the materials that were designed to be linked to each other. Fourth, existing programs were just designed to attain particular objects, to be conducted at a fixed time and to cater to particular graders. Fifth, when the students made problems by making use of the what if (not) strategy and the materials, they responded in diverse ways and were able to apply them.

  • PDF

A study on the development of elementary school mathematics program with a focus on social issues for the mathematically gifted and talented students for fostering democratic citizenship (민주시민의식함양을 위한 사회문제 중심 초등수학영재 프로그램 개발 -사회정의를 위한 수학교육을 기반으로)

  • Choi, Seong Yee;Lee, Chonghee
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.3
    • /
    • pp.415-441
    • /
    • 2017
  • The purpose of this study is to develop elementary school math classes for the gifted and talented with a focus on social issues to investigate the possibility of character education through specialized subject classes. As suggested in the goals of the math education for social justice, which provide the fundamental theoretical basis, through mathematics activities with a theme of social issues, mathematically gifted and talented young students can critically perceive social issues, express a sense of mathematical and critical agency throughout the course and develop a willingness and mindset to contribute to social progress. In particular, the concept of Figured Worlds and agency is applied to this study to explain the concept of elementary math classes for the gifted and talented with a focus on social issues. The concept is also used as the theoretical framework for the design and analysis of the curriculum. Figured Worlds is defined as the actual world composed of social and cultural elements (Holland et al., 1998) and can be described as the framework used by the individual or the social structure to perceive and interpret their surroundings. Agency refers to the power of practice that allows one to perceive the potential for change within the Figured Worlds that he is a part of and to change the existing Figured Worlds. This study sees as its purpose the fostering of young talent that has the agency to critically perceive the social structure or Figured Worlds through math classes with a theme of social issues, and thus become a social capital that can contribute to social progress.

  • PDF

A Study on the Manifestation Process Model Development of Group Creativity among Mathematically Gifted Students (수학영재의 집단창의성 발현 모델 개발)

  • Sung, Jihyun;Lee, Chonghee
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.557-580
    • /
    • 2017
  • The purpose of this study is developing the manifestation process model of group creativity among mathematically gifted students. Therefore, I designed the manifestation process model of group creativity by researching the existing literatures on group creativity and mathematical creativity. The manifestation process model of group creativity was applied to mathematically gifted students' class. By analyzing students' response, the manifestation process model of group creativity was improved and concretized. In conclusion, the process of a combination of contributions was concretized and the major variables on group creativity such as a diversity, conflict, emotionally supportive environment and social comparison were verified. In addition, some reflective processes was discovered from a case study.

Design of education program for mathematical-gifted student and Teaching-learning strategy - Focusing on functions - (수학영재교육 프로그램의 설계 및 교수-학습전략 -함수중심으로-)

  • Lee Joong-Kwoen;Lee Jea-Hyun
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.61-73
    • /
    • 2006
  • Studying functions is the fundamental that makes people understand complicate social events by using mathematical symbol system. But there are not enough program design and Teaching-learning strategy for mathematical-gifted student. So this research aim to design education program and teaching-learning strategy in functions area for mathematical-gifted student. 1 use real life-related problems to make students develop their problem-solving skill. And in this research I encourage students to study functions by grouping, discussion and presentation for self-directed teaming.

  • PDF

A Case Study on the Metacognition of Mathematically Gifted Elementary Students in Problem-Solving Process (초등 수학영재들이 수학문제 해결과정에서 보이는 메타인지 사례 연구)

  • Han, Sang-Wook;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.437-461
    • /
    • 2011
  • The purpose of this study was to examine the metacognition of mathematically gifted students in the problem-solving process of the given task in a bid to give some significant suggestions on the improvement of their problem-solving skills. The given task was to count the number of regular squares at the n${\times}$n geoboard. The subjects in this study were three mathematically gifted elementary students who were respectively selected from three leading gifted education institutions in our country: a community gifted class, a gifted education institution attached to the Office of Education and a university-affiliated science gifted education institution. The students who were selected from the first, second and third institutions were hereinafter called student C, student B and student A respectively. While they received three-hour instruction, a participant observation was made by this researcher, and the instruction was videotaped. The participant observation record, videotape and their worksheets were analyzed, and they were interviewed after the instruction to make a qualitative case study. The findings of the study were as follows: First, the students made use of different generalization strategies when they solved the given problem. Second, there were specific metacognitive elements in each stage of their problem-solving process. Third, there was a mutually influential interaction among every area of metacognition in the problem-solving process. Fourth, which metacognitive components impacted on their success or failure of problem solving was ascertained.

  • PDF