• Title/Summary/Keyword: 수체

Search Result 485, Processing Time 0.027 seconds

Effect of Nitrogen Fertigation by Soil Testing on the Growth and Yield of 'Campbell Early'(Vitis labrusca L.) Grapevine in Field Cultivation (노지 포도재배에서 토양검정시비량을 이용한 질소관비가 수체의 생육과 수량에 미치는 영향)

  • Kang, Seok-Beom;Lee, In-Bog;Lim, Tae-Jun;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.12-19
    • /
    • 2010
  • Optimum nitrogen fertigation level by soil testing was determined on the growth and yield of eleven-year-old 'Campbell Early' (Vitis labrusca L.) grapevine in a sandy loam soil from 2005 to 2007. Fifty percent of the annual application of the nitrogen rate (195 kg/ha/yr) was top-dressed as basal fertilizer in all treatments, and the remainders were drip-irrigated with fertigation rate at 25 (12.5% of total N, N 1/4 level of the remainder), 50 (25% of total N, N 1/2 level), and 100 mg/L (50% of total N, N 1 level) in intervals of twice (2.1 mm/times) a week for 12 weeks, and the effect of N drip fertigation was compared to control which the N remainder was applied with surface application as an additional fertilizer. The results showed that chlorophyll content reading in SPAD value and N contents of leaves increased as nitrogen fertigation level increased. Also observed was the growth of the internode and stem diameter of shoots which were longest at N 1/2 level among the treatments conducted both in 2005 and 2006. It was also noted that yield of the fruit was different every year, where average yield for three years was recorded highest in N 1/4 level, and lowest in N 1 level compared to control(surface application). Soluble solid content and titratable acidity of fruit juice were also not significant during the treatments, the maturation of fruits tended to be retarded in N 1 level. The study proved that N 1/4 (N 25 mg/L) levels of fertigation based on soil testing was most efficient in obtaining optimum yield and also, fertigation of grapevine at open field condition reduces the use of nitrogen fertilizer.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Nitrogen Recovery and Application Method in a Satsuma Mandarins Orchard (온주밀감 과원 토양에서 질소에 대한 시비방법과 시비수준에 따른 회수율)

  • Kang, Young-Kil;U, Zang-Kual;Kang, Bong-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.143-150
    • /
    • 1998
  • In order to evaluate the nitrogen (N) balance, from the different application methods and levels of $^{15}N$ applied to a satsuma mandarin orchard soils in spring, we surface-applied N as urea at the rates of 50 (water-dissolved), 100 (solid and water-dissolved) and 150% (solid) of the recommended rate ($180kg\;ha^{-1}$) in spring (lebeled N), summer (nonlebeled N) with application ratio of 5:2:3. Fruit yield and quality were not significantly affected by any treatment. Nitrogen contents of spring flush leaves in late August were 3.0% regardless of the treatments. The N recovery by parts of tree itself was in the order of leaves, fruits, roots, stems, and the highest recovery per tree was 22.3% in the 50% recommended water-dissolved surface broadcast while there were not much differences for N recovery (11.9 to 13.6%) among the other three treatments. Total N content in top 30cm of soils was 0.47% regardless of the treatments, but N proportion and total residual N from the fertilizer applied increased with increasing N rate while the N recovery in soils decreased. For the recommended N rate, N proportion and the residual N from the fertilizer applied were greater in the water-dissolved surface broadcast than those in soils surface broadcast. The highest total (tree + soils) N recovery was 70.9% in the 50% recommended water-dissolved surface broadcast, but tended to decrease to 52.2, 46.6, and 43.2% for the recommended water-dissolved surface broadcast, 100 and 150% of the recommended solid surface broadcast, respectively.

  • PDF

Changes in the Organic Compound Contents of the Pear Rootstocks Pyrus calleryana and Pyrus betulaefolia Affected by Excessive Soil Moisture (토양 과습처리에 의한 배 대목 Pyrus calleryana 와 Pyrus betulaefolia 집단의 유기물 함량 변화)

  • Won, KyungHo;Kim, Yoon-Kyeong;Ma, Kyeong-Bok;Shin, Il-Sheob;Lee, Ug-Yong;Lee, Byul-Ha-Na;Choi, Jin-Ho;Lee, In-Bok;Kim, Myung-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.3
    • /
    • pp.175-183
    • /
    • 2016
  • BACKGROUND: There's a long rainy season during the Summer in Northeast Asia, including Korea. Heavy rainfall during this season causes harm to tree's root, and damped injury in the pear has been continuously reported. Pear Research Institute is breeding damp resistant rootstocks and investigating their mechanisms to relieve damped damages in the pear.METHODS AND RESULTS: Seedlings of Pyrus betulaefolia and P. calleryana were divided into two groups: control and damped, respectively. Damped group was treated by constant irrigation for 77 days and control group was maintained to keep the soil moisture pressure between 0 and -10 kPa. After the treatment, we analysed trees' growth rate, chlorophyll content, amino acids and total phenolic compounds. As a result, P. betulaefolia was sensitive to damped treatment while P. calleryana did not have significant differences between the control and damped treatment. It was observed that total contents for phenolic compounds were dramatically increased in P. betulaefolia while trees' growth rate, chlorophyll b and general amino acid contents were lowered by damping treatment.CONCLUSION: In some pear cultivars, growth habit is suppressed by damped damage. Pyrus calleryana displayed tolerances to damped damage in growth rate and some organic compound contents compared to P. betulaefolia. So we recommend to exploit P. calleryana as a pear rootstock rather than using P. betulaefolia.

Tree Response of 'Fuyu' Persimmon to Different Degrees of Cold Damage on the Buds at Budburst (발아기 꽃눈의 저온피해 정도에 따른 '부유' 감나무의 수체 생장 반응)

  • Choi, Seong-Tae;Park, Doo-Sang;Son, Ji-Young;Park, Yeo-Ok;Hong, Kwang-Pyo;Rho, Chi-Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • BACKGROUND: The buds of persimmon trees are susceptible to cold damage, often with the late frost, at the time of budburst. This study was conducted to determine effect of the cold damage on shoot and fruit growth the current season. METHODS AND RESULTS: 'Fuyu' trees, grown in 50-L pots, were placed for 1 h at $-2.2{\pm}0.5$, $-2.6{\pm}0.5$, or $-3.0{\pm}0.5^{\circ}C$ within a cold storage, at their budburst on April 5. Some trees under ambient temperature at $10-17^{\circ}C$ served as the control. Cold damage of the buds containing flower buds was 54% at $-2.2^{\circ}C$, and significantly increased to 95% at $-3.0^{\circ}C$. The bud damage included the complete death of all, complete death of main buds only, or the late and deformed shoot growth in the spring. Number of flower buds in early May dramatically decreased as the damage ratio increased. Since the thinning of flower buds in mid-May and fruitlets in early July was done in no or slightly damaged trees, the final number of fruits and yield did not decrease compared with the control when the damage increased by 60% and 70%, respectively. Average fruit weight and skin coloration tended to be better with increasing bud damage. Shoot growth was more vigorous in those trees whose buds were severely damaged by low temperature. CONCLUSION(S): Shoot growth and the yield may depend on the number of flower buds and percent fruit set after the cold damage.

The Applications of a Multi-metric LEHA Model for an Environmental Impact Assessments of Lake Ecosystems and the Ecological Health Assessments (호수생태계 환경영향평가를 위한 LEHA 다변수 모델 적용 및 생태건강성 평가)

  • Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.483-501
    • /
    • 2012
  • The purpose of this study was to apply a multi-metric model of Lentic Ecosystem Health Assessments(LEHA) for environmental impact assessments of Cheongpyung Reservoir during 2005 - 2006 and assessed the ecological model values. The ecosystem model of LEHA was composed of eleven metrics such as biological parameters($B_p$), physical parameters($P_p$), and chemical parameters($C_p$), and determined the rank of ecological health by the criteria. The variables of $B_p$ were metrics of % sensitive species($M_2$, NMS) and insectivore species($M_5$, % $I_n$), which decrease as the water quality degradates, and these metric values were low as 1.5% and 32.4%, respectively. In contrast, the proportions of tolerant species and omnivore species as the other $B_p$ parameters were 43% and 62%, respectively, which indicate a degradation and disturbance of the ecosystem. Riparian vegetation coverage($M_9$, % $V_c$) as a variable of $P_p$, were higher in the 2nd than 1st survey, and decreased toward the dam site from the headwaters. This was due to a habitat simplification(modifications) by frequent bottom dredging of sand and rocks. The variables of $C_p$ were two metrics of specific conductivity($M_{10}$, $C_I$) as an indicator of ionic contents(cations and anions) and the Trophic State Index(TSI) based on chlorophyll-a($M_{11}$, $TSI_{CHL}$) as an indicator of trophic state. These metric values of $C_p$ had high temporal variations, but low spatial variations on the main axis of the reservoir along with the ecological health of a good condition. The environmental impact assessments using the LEHA multi-metric model indicated that the model values of LEHA averaged 30.7 in 1st survey(fair - poor condition) vs. 28 in 2nd survey(poor condition), indicating a temporal variation of the ecological health. The model values of LEHA showed a minimum(28) in the lacustrine zone(S5) and ranged from 29 to 30 in the other locations sampled, indicating a low longitudinal variation. Overall, environmental impact assessments, based on LEHA model, suggest that chemical water quality conditions were in good, but biological conditions were disturbed due to habitat modifications by frequent dredgings in the system.

Effects of Tree-spray of Calcium Agent, Coating Agent, GA4+7 + BA and Paper Bagging on Russet Prevention and Quality of 'Gamhong' Apple Fruits (칼슘제, 피막제, GA4+7 + BA의 수체살포 및 봉지씌우기에 의한 '감홍' 사과의 동녹 방지와 과실품질)

  • Moon, Young-Ji;Nam, Ki-Woong;Kang, In-Kyu;Moon, Byung-Woo
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.528-536
    • /
    • 2016
  • This study was conducted to examine the effect of 0.4% of $CaCl_2$, $2H_2O$, $1mg{\cdot}L^{-1}$ of Calmodulin (CaM)-SH, 250-folds of coating agent (WE-36), 1,000-folds of $GA_{4+7}+BA$ and 3 types of paper bagging treatments on russet incidence and fruit quality attributes of 'Gamhong' apple. The pattern of russet occurrence was slightly different for 4 years (from 2012 to 2015) in 'Gamhong' apple. The russet occurrence was lowest in $GA_{4+7}+BA$ treatment at 20 days after full bloom (DAFB), compared with other treatments. The $GA_{4+7}+BA$ treatment increased fruit weight at 20 DAFB, while the other fruit quality attributes were not influenced. The russet occurrence was lower not only in a single bag application than in untreated ones but also in yellow bagging and discolored bagging applications than in a white bagging application. The russet occurrence in a bagging application was lower at 20 DAFB than at 30 and 40 DAFB, while fruit quality attributes were not affected by bagging applications. The russet incidence was lower in $GA_{4+7}+BA$ twice treatments at 20 and 30 DAFB, and calcium coated bag at 30 DAFB after $GA_{4+7}+BA$ treatment at 20 DAFB than in untreated fruit. The rate of russet incidence was lowest at equator region in $GA_{4+7}+BA$ treatment, compared with the other fruit regions. Overall, the results suggest that one and/or two applications of $GA_{4+7}+BA$ (1,000-folds) treatment at 20 DAFB should reduce the risk of russet incidence in 'Gamhong' fruit.

Spatio-temporal Water Quality Variations at Various Streams of Han-River Watershed and Empirical Models of Serial Impoundment Reservoirs (한강수계 하천에서의 시공간적 수질변화 특성 및 연속적 인공댐호의 경험적 모델)

  • Jeon, Hye-Won;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.378-391
    • /
    • 2012
  • The objective of this study was to determine temporal patterns and longitudinal gradients of water chemistry at eight artificial reservoirs and ten streams within the Han-River watershed along the main axis of the headwaters to the downstreams during 2009~2010. Also, we evaluated chemical relations and their variations among major trophic variables such as total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (CHL-a) and determined intense summer monsoon and annual precipitation effects on algal growth using empirical regression model. Stream water quality of TN, TP, and other parameters degradated toward the downstreams, and especially was largely impacted by point-sources of wastewater disposal plants near Jungrang Stream. In contrast, summer river runoff and rainwater improved the stream water quality of TP, TN, and ionic contents, measured as conductivity (EC) in the downstream reach. Empirical linear regression models of log-transformed CHL-a against log-transformed TN, TP, and TN : TP mass ratios in five reservoirs indicated that the variation of TP accounted 33.8% ($R^2$=0.338, p<0.001, slope=0.710) in the variation of CHL and the variation of TN accounted only 21.4% ($R^2$=0.214, p<0.001) in the CHL-a. Overall, our study suggests that, primary productions, estimated as CHL-a, were more determined by ambient phosphorus loading rather than nitrogen in the lentic systems of artificial reservoirs, and the stream water quality as lotic ecosystems were more influenced by a point-source locations of tributary streams and intense seasonal rainfall rather than a presence of artificial dam reservoirs along the main axis of the watershed.

Growth of 'Wonhwang' Pear Trees and Regrowth Rates of Stem Cuttings in Vitro as Affected by Time and Degree of Defoliation (적엽시기와 수준에 따른 '원황' 배나무의 수체생장과 기내 삽수의 재생장율 비교)

  • Kim, Byeong-Sam;Cho, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Choi, Hyun-Sug;Han, Jeom-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.267-280
    • /
    • 2015
  • The study was conducted to evaluate effects of time and degree of defoliation on growth of 'Wonhwang' pear (Pyrus pyrifolia Nakai) trees managing with low pesticides as well as regrowth of cuttings in vitro. Treatments included degree of defoliation (20% and 60%) with time of defoliation (Early-Aug, End-Aug, and Early-Sep); Early-Aug (20%), Early-Aug (60%), End-Aug (20%), End-Aug (60%), Early-Sep (20%), Early-Sep (60%), and No defoliation. No defoliation and Early-Sep (20%) defoliation increased growth of water sprouts and new shoots, which were improved by delayed defoliation or 20% of defoliation. Total-C, total-N, B, and free sugar contents increased in No defoliation-shoots but decreased in End-Aug (60%)-shoots. Delayed defoliation increased total-C, total-N, and free sugar in shoots, with high contents of C, K, Ca, Mg, and B observed for 20% of defoliation-trees. Fruit yield and weight or fruit length increased in No defoliation, End-Aug (20%) defoliation, and Early-Sep (20%) defoliation, but reduced in End-Aug (60%). Fruit soluble solids content reduced in defoliation in August. Time of defoliation did not affect the fruit yield and fruit quality, while degree of defoliation influenced yield and fruit weight and length. Defoliation at End-Aug (60%) mostly increased the leakage rates of the stem cuttings at $-18^{\circ}C$ and $-21^{\circ}C$ in vitro and reduced the germination rates at $-24^{\circ}C$ and $-27^{\circ}C$. Under comparison of time and degree of defoliation, the Early-Sep defoliation increased germination rates of the stem cuttings at $-27^{\circ}C$ in vitro, and 60% of defoliation decreased the germination rates compared to the 20% of defoliation.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.