DOI QR코드

DOI QR Code

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter

수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰

  • Kim, Tae-Woo (Department of Spatial Information Engineering System, Pukyong University) ;
  • Shin, Han-Sup (Chungang-Aerosurvey Co. Ltd.) ;
  • Suh, Yong-Cheol (Department of Spatial Information Engineering System, Pukyong University)
  • 김태우 (부경대학교 공간정보시스템공학과) ;
  • 신한섭 (중앙항업) ;
  • 서용철 (부경대학교 공간정보시스템공학과)
  • Received : 2013.10.28
  • Accepted : 2013.11.20
  • Published : 2014.02.28

Abstract

This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

본 연구는 항공 초분광영상을 사용한 수질추정 활용을 검토하고 한강일부분에 대해 가용한 측정자료를 이용하여 초분광영상 기반의 수질추정을 테스트하였다. 원격탐사에 의한 수질추정은 수체에 대한 downwelling과 수체 내에서의 산란과 반사에 대한 관측정보를 이용하는 방법과 원격탐사 센서에 도달하는 upwelling과 수질측정정보와의 선형적 회귀분석을 구하는 방법이 선호된다. 두 방법 모두 유의미한 결과를 도출하지만 수질정보나 산란정보 등 추정에 필요한 보조자료에 의한 영향이 더 클 것으로 판단되었다. 수질 추정 테스트는 팔당댐 하류에 위치한 한강의 일부분에 대해서 적용되었다. AISA eagle 초분광센서로 취득된 자료와 수질관측정보를 선형적 회귀분석을 통한 방법을 적용하였다. 기존 문헌에서 제시된 밴드조합에 대해서 회귀분석한 결과 유의미한 밴드조합으로 $-24.847+0.013L_{560}$의 회귀식을 얻었다 ($L_{560}$은 560 nm 파장에서의 radiance로 $R^2$=0.985). 다중분광영상을 이용했을 경우의 결과와 비교하기 위해서 spectral resampling을 통해 Landsat TM 영상을 생성하여 -55.932 + 33.881(TM, TM3)의 회귀식을 얻을 수 있었다(TM, TM3는 radiance로, $R^2$=0.968). 부유물질 농도는 수질측정지점에서 약 3.75 mg/l 이고, 초분광영상으로 추정된 농도는 약 3.65 mg/l, 시뮬레이션된 TM은 약 5.85 mg/l 로 다중분광영상을 이용했을 경우 과대 추정하는 경향을 보였다. 항공 초분광영상의 활용가치를 높이고 보다 정밀한 값을 추정하기 위해서 영상 전반에 걸친 sun glint 와 같은 영향을 최소화하기 위해 태양고도각을 고려하여 정교한 비행계획을 구성하고 체계적 전처리와 검 보정 체계를 갖출 필요가 있다고 사료된다. 일반적으로 적용된 방법에 따른 테스트로, 대기보정의 정밀성과 부족한 수질측정 샘플자료, 분광밴드의 검색, 적합한 선형회귀모델의 선택, 그리고 정량적 검증방법과 같은 몇 가지 문제점과 제약사항들을 발견할 수 있었다.

Keywords

References

  1. Ben-Dor, E., B. Kindel and A.F.H. Goetz, 2004. Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data, Remote Sensing of Environment, 90: 389-404. https://doi.org/10.1016/j.rse.2004.01.014
  2. Bistani, L.F.C., 2009. Identifying total phosphorus spectral signal on tropical estuary lagoon using an hyperspectral sensor and its application to water quality modeling, Ph.D Thesis, University of Puerto rico, pp. 109-113.
  3. Bochow, M., B. Heim, T. Kuster, C. Robaß, I. Bartsch, K. Segl and H. Kaufmann, 2012. Automatic detection and delineation of surface water bodies in airborne hyperspectral data, IEEE IGARSS, Munich Germany Jul. 22-27, pp.5226-5229.
  4. Brekke, C. and A.H.S. Solberg, 2005. Oil spill detection by satellite remote sensing, Remote Sensing of Environment, 95: 1-13. https://doi.org/10.1016/j.rse.2004.11.015
  5. Brown, C.D., M.V. Hoyer, R.W. Bachmann and D.E. Canfield Jr., 2000. Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data, Canadian Journal of Fisheries and Aquatic Sciences, 57(8): 1574-1583. https://doi.org/10.1139/f00-090
  6. Chang, A.J., Y.I. Kim, S.K. Choi, D.Y. Han, J.W. Choi, Y.M. Kim, Y.K. Han, H.L. Park, Wang B. and H.C. Lim, 2013. Construction and data analysis of Test-bed by hyperspectral airborne remote sensing, Korean Journal of Remote Sensing, 29 (2): 161-172. https://doi.org/10.7780/kjrs.2013.29.2.1
  7. Choi, S.P. and I.T. Yang, 1998. Water quality elements extraction of lake by the Landsat TM Images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 16 (2): 225-233.
  8. Choi, E.Y., J.W. Lee and J.K. Lee, 2011. Estimating of chlorophyll-a concentrations in the Nakdong River using high-resolution satellite image, Korea Journal of Remote Sensing, 27(5): 613-623. https://doi.org/10.7780/kjrs.2011.27.5.613
  9. Dekker, A.G., R.J. Vos and S.W.M. Peters, 2001. Comapriso of remote sensing data, model results and in situ data for total suspended mateer (TSM) in the sourthern Frisian lakes, The Science of the Total Environment 268: 197-214. https://doi.org/10.1016/S0048-9697(00)00679-3
  10. Gmur, S., D. Vogt, D. Zabowski and L.M. Moskal, 2012. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees, Sensors, 12: 10639-10658. https://doi.org/10.3390/s120810639
  11. Govender, M., K. Chetty and H. Bulcock, 2007. A review of hyperspectral remote sensing and its application in vegetation and water resource studies, Water SA, 33(2): 145-152
  12. Hakvoort, H., J. dede Hann, R. Jordans, R. Vos, S. Peters and M. Rijeboer, 2002. Towards airborne remote sensing of water quality in the Netherlands-validation and error analysis, J. Photogr. Remote Sens, 57: 171-183. https://doi.org/10.1016/S0924-2716(02)00120-X
  13. Han, E.J., K.T. Kim, D.H. Jeong, S.Y. Cheon, S.J. Kim, S.J. Yu, J.Y. Hwang, T.S. Kim and M.H. Kim, 1998. Assessment of trophic state for Daecheong reservoir using Landsat TM Imagery data, Environmental Impact Assessment, 7(1): 81-91.
  14. Han, L., 1997. Spectral reflectance with varying suspended sediment concentrtions in clear and algar-laden waters, Photogrammetric Engineering & Remote Sensing, 63(6): 701-705.
  15. Hochberg, E.J. and M.J. Atkinson, 2003. Capabilities of remote sensing to classify coral, algae, and san as pure and mixed spectra, Remote Sensing of Environment, 85: 174-189. https://doi.org/10.1016/S0034-4257(02)00202-X
  16. Im, S.H. and J.C. Jeong, 1999. Comparison between neural network and conventional statistical analysis methods for estimation of water quality using remote sensing, Journal of the Korean Society of Remote Sensing, 15(2): 107-117. https://doi.org/10.7780/kjrs.1999.15.2.107
  17. Jang, D.H., G.H. Jo and G.H. Chi, 1998. The analysis of spectral characteristics of water quality factors using airborne MSS data. Journal of the Korean Society of Remote Sensing, 14(3): 295-306.
  18. Jang, T.I., S.W. Park and S.M. Kim, 2003. The Analysis of water quality and tidal flow of a freshwater lake using Landsat images, Proc. of Korean Society of agricultural engineers Annual Conference. 1 Nov.
  19. Jensen, R., P. Mausel, N. Dias, R. Gonser, C. Yang, J. Everitt and R. Fletcher, 2007. Spectral analysis of coastal vegetation and land cover using AISA+ hyperspectral data, Geocarto International, 22(1): 17-28. https://doi.org/10.1080/10106040701204354
  20. Jeong, J.C., 1999. Water quality evaluation for coastal waters and lake Sihwa using remote sensing Techniques, Seoul University, Ph.D Thesis.
  21. Jeong, J.C., 2000. Distribution of surface temperature and chlorophyll-a in lake Soyang using remoter sensing techniques. Environmental Impact Assessment, 9(3): 177-183.
  22. Ji, S.B., 2013. Monitoring of reservoir water quality using Multi-temporal satellite imagery, Chongju University, Master Thesis.
  23. Kim, H.G. and T.G. Kim, 1996. The water Quality Management of Daecheong Reservoir using remote sensing, Journal of Korean society of Environmental Engineering, 18(10): 1383-1396.
  24. Kim, H.Y., 2009. The Proposal of Turbidity Criteria and Trophic State Index in Artificial Lakes, Ph.D Thesis, Chunbuk University, pp.16-25.
  25. Kim, T.G., T.S. Kim, G.S. Cho and H.G. Kim, 1996. Analysis of chlorophyll reflectance and assessment of trophic state for Daecheong reserior using remote sensing, Journal of the Korea society for geo-spatial information system, 4(2): 35-45.
  26. Kim, T.W., G.J. We and Y.C. Suh, 2012. Correlation Analysis with Vegetation Indices and Vegetation- Endmembers from Airborne Hyperspectral Data in Forest Area, Journal of the Korean Association of Geographic Information Stuides, 15(3): 52-65. https://doi.org/10.11108/kagis.2012.15.3.052
  27. Koponen, S., J. Pulliainen, K. Kallio and M. Hallikainen, 2002. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data, Remote Sens. Environ, 79: 51-59. https://doi.org/10.1016/S0034-4257(01)00238-3
  28. K-water, 2013. Technology Development of Algae Monitoring in river/lake, based on Remotely Sensed Image, Symposium on Future Technology, 26 September 2013, K-water institute, Daejeon, KOREA.
  29. Kruse, F.A., 2002. Comparison between AVIRIS and Hyperion hyperspectral mineral mapping, Proceedings of the 11th JPL airborne earth science workshop, JPL Publication 03-4 December 2002, Pasadena, CA, pp.171-180.
  30. Lee, G.H. and S.H. Lee, 2012, Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing, Journal of the Korean Association of Geographic Information Studies, 15(3): 137-147. https://doi.org/10.11108/kagis.2012.15.3.137
  31. Lee, S.M., J.Y. Lee, K.H. Baek, J.W. Choi and Y.S. Kim. 2012. Hyperspectral Imaging (HSI) Application for detection of Organic Compounds in Water. Journal of Korean Society for Environmental Analysis. 15(3): 179-187.
  32. Lim, H.J., 2003. Methodical study to perform enhanced verification of water temperature model using remote sensing, Ewha Womans University, Master Thesis.
  33. Mazumder, A. and K.E. Havens, 1999. Nutrientchlorophyll- Secchi relationships under contrasting grazer communities of temperate versus subtropical lakes, Canadian Journal of Fisheries and Aquatic Sciences, 55(7): 1652-1662. https://doi.org/10.1139/f98-050
  34. Myung, H.C., 2009. Verification, validation and application of image SNR distribution based upon nonlinear image sensor model using simulation, Korea Aerospace Research institute, 8(2): 160-169.
  35. Ostlund, C., P. Flink, N. Strombeck, D. Pierson and T. Lindell, 2001. Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper, The Science of the Total Environment, 268: 139-154. https://doi.org/10.1016/S0048-9697(00)00683-5
  36. Selige, T., J. Bohner and U. Schmidhalter, 2006. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures, Geoderma, 136(1-2): 235-244. https://doi.org/10.1016/j.geoderma.2006.03.050
  37. Son, Y.B., Y.H. Kang and J.H. Ryu, 2012. Monitoring Red Tide in South Sea of Korea (SSK) using the Geostationary Ocean Color Imager (GOCI), Korean Journal of Remote Sensing, 28(5): 531-548. https://doi.org/10.7780/kjrs.2012.28.5.6
  38. Sudduth, K.A., G.S. Jang, R.N. Lerch and E.J. Sadler, 2005. Estimating water quality with airborne and ground-based hyperspectral sensing, An ASAE Meeting Presentation Tampa Convertion Center, paper nubmer:052006.
  39. Suh, Y.S, N.K. Lee, L.H. Jang, J.D. Hwang, S.J. Yoo and H.S. Lim, 2002. Characteristic response of the OSMI bands to estimate chlorophyll a, Korea Journal of Remote Sensing, 18(4):187-199. https://doi.org/10.7780/kjrs.2002.18.4.187
  40. Szekielda, K.H., J.H. Bowles, D.B. Gills and W.D. Miller, 2009. Interpretation of absorption bands in airborne hyerpsepctral radiance data, Sensors, 9:2907-2925. https://doi.org/10.3390/s90402907
  41. Thiemann, S. and H. Kaufmann, 2002. Lake water quality monitoring using hyperspectral airborn data - a semiempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany, Remote Sens. Environ, 81: 228-237. https://doi.org/10.1016/S0034-4257(01)00345-5
  42. Wang, J.P., S.T. Cheng and H. F. Jia, 2008. Application of artificial neural network technology in water color remote sensing inversion of inland water body using TM data, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Proc. of ISPRS congress, Istanbul.
  43. Yoo, S.J. and J.C. Jeong, 1999. Perspectrives on the application of remote sensing for observation of Ocean Environments, Journal of Korean Society of Remote Sensing, 15(3): 277-288 (in Korean with English abstract).

Cited by

  1. Estimation of Water Quality using Landsat 8 Images for Geum-river, Korea vol.48, pp.2, 2015, https://doi.org/10.3741/JKWRA.2015.48.2.79
  2. 연안해역 모니터링을 위한 초분광영상 처리기법 현황 vol.18, pp.1, 2015, https://doi.org/10.11108/kagis.2015.18.1.048
  3. Estimation of chlorophyll-a concentration with semi-analytical algorithms using airborne hyperspectral imagery in Nakdong river of South Korea vol.27, pp.1, 2014, https://doi.org/10.1007/s41324-018-0204-0
  4. 연안 해역의 클로로필 농도 추정을 위한 초분광 및 위성 클로로필 영상 비교 연구 vol.36, pp.2, 2014, https://doi.org/10.7780/kjrs.2020.36.2.2.7