DOI QR코드

DOI QR Code

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation

화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석

  • Lee, Kwon-Ho (Department of Geoinformatics Engineering, Kyungil University) ;
  • Jang, Eun-Suk (Faculty of Engineering, Hanzhong University)
  • Received : 2013.10.24
  • Accepted : 2013.02.12
  • Published : 2014.02.28

Abstract

Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

화산재입자의 굴절률과 산란 같은 고유 광학 특성으로 결정되는 분광학적 신호는 원격탐사 센서를 통하여 측정될 수 있지만, 화산 폭발 이후 생성된 화산재입자의 성분에 대한 굴절률에 관한 정보는 매우 제한적이었다. 따라서, 화산재입자의 원격탐사의 강건성을 개선하기 위하여 화산재입자와 복사전달 과정의 상호작용에 대한 정확한 이해가 필요하다. 본 연구에서는 화산재 주요 성분으로 알려진 화산성 안산암과 부석에 대한 입자 소산계수, 산란 위상함수, 비대칭 계수, 단산란 알베도 값을 정량화 하였다. 이러한 화산재입자의 고유 광학 특성값은 복사전달모델의 입력자료로 이용하여 다양한 에어러솔 광학두께(${\tau}$) 및 기하조건에서 원격탐사 센서(인공위성과 지상관측용)가 측정하는 이론적인 복사량과 화산재입자 특성의 관계를 분석하였다. 복사전달모델 분석결과, 대기권 최상층부에서 ${\tau}$ 에 대한 복사량의 변화율의 평균값은 안산암의 경우 부석보다 6배 정도 크게 나타났다. 지표에서 이러한 변화율은 ${\tau}$ <1인 경우 양의 상관관계를 보이지만, ${\tau}$ >1인 경우에는 음의 상관관계를 보였다. 그러나, 적외선 영역인 11 ${\mu}m$ 에서는 차이가 매우 적게 나타났으며, 여기서 발생하는 복사량의 오차범위는 광학두께가 증가할수록 커지는 양상을 보이며, 다항 회귀함수로 표현될 수 있다. 이러한 결과는 원격 탐사 관측자료를 이용한 화산재 관측에 있어서 화산재의 정량적 분석에 도움이 될 것이다.

Keywords

References

  1. Bohren, C.F., and D. Huffman, 1983. Absorption and scattering of light by small particles, Wiley, New York.
  2. Campanelli, M., V. Estelles, T. Smyth, C. Tomasi, M.P. Martinez-Lozano, B. Claxton, Nakajima, T.,Campanelli, M. Estelles, V. Smyth, T. Tomasi, C. Martinez-Lozano, MP; Claxton, B. Muller, P. Pappalardo, G. Pietruczuk, A. Shanklin, J. Colwell, S; Wrench, C. Lupi, A. Mazzola, M. Lanconelli, C. Vitale, V. Congeduti, F. Dionisi, D. Cardillo, F. Cacciani, M. Casasanta, G. Nakajima, T., 2012. Monitoring of Eyjafjallajokull volcanic aerosol by the new European Skynet Radiometers(ESR) network, Atmos. Environ., 48: 33-45, 10.1016/j.atmosenv.2011.09.070.
  3. Derimian, Y., O. Dubovik, D. Tanré, P. Goloub, T. Lapyonok, and A. Mortier, 2012. Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117: D00U25, doi:10.1029/2011JD016815.
  4. Egan, W.G., T. Hilgeman, and K. Pang, 1975. Ultraviolet complex refractive index of martian dusts: laboratory measurements of terrestrial analogs, ICARUS, 25: 344-355. https://doi.org/10.1016/0019-1035(75)90029-9
  5. Ellrod, G.P., B.H. Connell, and D.W. Hillger, 2003. Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J. Geophys. Res., 108(D12), doi:10.1029/2002JD 002802.
  6. Francis, P.N., M.C. Cooke, and Saunders, R.W., 2012. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajull eruption, J. Geophys. Res., 117: D00U09, doi:10.1029/2011JD016788.
  7. Gasteiger, J., S. GroB, V. Freudenthaler, and M. Wiegner, 2011. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys., 11: 2209-2223, doi:10.5194/acp-11-2209-2011.
  8. Lee, D.H., K.H. Lee, and Y.J. Kim, 2006a. Application of MODIS Aerosol Data for Aerosol Type Classification, Korean J. of Remote Sensing, 22(6): 495-505 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2006.22.6.495
  9. Lee, D.H., K.H. Lee, and Y.J. Kim, 2006b. Atmospheric aerosol detection and its removal for satellite data, Korean J. of Remote Sensing, 22(5): 1-5. https://doi.org/10.7780/kjrs.2006.22.1.1
  10. Lee, K.H. and Y.J. Kim, 2008. Sensitivity of COMS/GOCI measured top-of-atmosphere reflectances to atmospheric aerosol properties, Korean J. of Remote Sensing, 24(6): 559-569 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.6.559
  11. Lee, K.H., 2013. Role of the scattering phase function in the remote sensing of non-spherical dust aerosols, J. of the Korean Physical Society, 62(6): 966-974. https://doi.org/10.3938/jkps.62.966
  12. Lee, K.H., C.S. Hong, and Y.J. Kim, 2004. Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data, Korean J. of Remote Sensing, 20(2): 77-89 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2004.20.2.77
  13. Miffre, A., G. David, B. Thomas, P. Rairoux, A.M. Fjaeraa, N.I. Kristiansen, and A. Stohl, 2012. Volcanic aerosol optical properties and phase partitioning behavior after long-range advection characterized by UV-Lidar measurements, Atmos. Environ., 48: 76-84. https://doi.org/10.1016/j.atmosenv.2011.03.057
  14. Mishchenko, M.I., I.V. Geogdzhayev, W.B. Rossow, B. Cairns, B.E. Carlson, A.A. Lacis, L. Liu, and L.D. Travis, 2007. Long-term satellite record reveals likely recent aerosol trend, Science, 315(1543), doi:10.1126/science.1136709.
  15. Patterson, E., 1981. Measurement of the imaginary refractive index between 300 and 700nm of Mount St. Helens ash, Science, 211.
  16. Patterson, E.M. and C.O. Pollard, 1983. Optical properties of the ash from El Chicho'n volcano, Geophys. Res. Lett., 10(4): 317-320. https://doi.org/10.1029/GL010i004p00317
  17. Patterson, E.M., 1975. Optical absorption coefficients of soil aerosol particles and volcanic ash between 1 and 16um, The 2nd Conference on Atmospheric Radiation, American Meteorological Society, 177-180.
  18. Pollack, J.B., O.B. Toon, and B.N. Khare, 1973. Optical properties of some terrestrial rocks and glasses, Icarus, 19: 372-389. https://doi.org/10.1016/0019-1035(73)90115-2
  19. Prata, A.J, 1989. Observations of volcanic ash clouds in the 10-12-micron window using AVHRR/2 Data, Int. J. Remote Sens., 10: 751-761. https://doi.org/10.1080/01431168908903916
  20. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998. SBDART: A research and teaching software tool for plane parallel radiative transfer in the earth's atmosphere, Bull. Amer. Meteor. Soc., 79: 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  21. Volz, F.E., 1973. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice and fly ash, Appl. Opt., 12: 564-568. https://doi.org/10.1364/AO.12.000564
  22. Warren, S.G. and Brandt, R.E., 2009. Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113(D14), DOI: 10.1029/2007JD009744.
  23. World Meteorological Organization(WMO), 1986. A preliminary cloudless standard atmosphere for radiation computation, WCP-112 -World Climate Research Program, CAS, Radiation Commission of IAMAP, Boulder, Colo., 1986.

Cited by

  1. Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis vol.30, pp.2, 2014, https://doi.org/10.5572/KOSAE.2014.30.2.139
  2. Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima vol.35, pp.4, 2014, https://doi.org/10.5467/JKESS.2014.35.4.237
  3. Improving Polynomial Regression Using Principal Components Regression With the Example of the Numerical Inversion of Probability Generating Function vol.15, pp.1, 2015, https://doi.org/10.5392/JKCA.2015.15.01.475