• Title/Summary/Keyword: Simulated Landsat TM

Search Result 16, Processing Time 0.023 seconds

A Study on the Land-Use Changes on the Balan Water sheds Using the Multi-temperature Landsat TM Images (다시기 Landsat TM 영상을 이용한 소유역의 토지이용변화분석)

  • 강문성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.473-478
    • /
    • 1999
  • The purpose of the study were to detect and evaluate the land use and changes on the Balan Watersheds, located southwest of Suwon, using the Thematic Mapper(TM) data. Three sests of TM taken in 1985 , 1993 and 1996 were used and the changes in the land use analyzed and compared. The suupervised and unsuperivised classification methods were adoppted to classify five land-cover categories ; Paddy , upland , forest , residential , and water. Future ladn use patterns were simulated using a Markow chain method, and the change ratios presented.

  • PDF

Generation of Simulated Image from Atmospheric Corrected Landsat TM Images (대기보정된 Landsat TM 영상으로부터 모의영상 제작)

  • Lee, Soo Bong;La, Phu Hien;Eo, Yang Dam;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A remote sensed image simulation following to weather and season conditions can be performed by a reverse atmospheric correction which is a function of image preprocessing. In this study, we have made an experiment to generate the simulated image to the raw image, which is prior to the atmospheric corrected images under the specific weather conditions. The applied methods in this study were the Forster algorithm (1984) and 6S RTM (Radiative Transfer Model). The simulated images has been compared with the original image to analyze compliances. In fact, the results from 6S RTM method show better compliances than Forster, with a mean of RMSE of DN difference 9.35 and a mean of $R^2$ 0.7. In conclusion, a simulated image has practical feasibility when similar to the period and season as the reference image.

The Generation of SPOT True Color Image Using Neural Network Algorithm

  • Chen, Chi-Farn;Huang, Chih-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.940-942
    • /
    • 2003
  • In an attempt to enhance the visual effect of SPOT image, this study develops a neural network algorithm to transform SPOT false color into simulated true color. The method has been tested using Landsat TM and SPOT images. The qualitative and quantitative comparisons indicate that the striking similarity can be found between the true and simulated true images in terms of the visual looks and the statistical analysis.

  • PDF

Landsat Images Applied for Analyzing Spatial Flow and Water Quality Patterns in a Korea Estuary Dam

  • Park, S.W.;Torii, K.;Aoyama, S.;Cho, B. J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1239-1241
    • /
    • 2003
  • This paper presents the results of Landsat-TM imagery applications for detecting spatial variations of the water environments in the Saemankeum (STLR) project areas. The simulated tidal flow patterns from a two -dimensional hydro - dynamic model and water quality data from STRL project were used for relationships with the satellite data. Unsupervised classification of the tidal water body reflects the overall flow patterns at a flooding tide. Regressive equations for water quality parameters were derived and used for supervised classifications. The results were found to be useful to synoptically evaluate the water environments during the construction stages of the STLR project.

  • PDF

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Estimating Pollutant Loading Using Remote Sensing and GIS-AGNPS model (RS와 GIS-AGNPS 모형을 이용한 소유역에서의 비점원오염부하량 추정)

  • 강문성;박승우;전종안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.102-114
    • /
    • 2003
  • The objectives of the paper are to evaluate cell based pollutant loadings for different storm events, to monitor the hydrology and water quality of the Baran HP#6 watershed, and to validate AGNPS with the field data. Simplification was made to AGNPS in estimating storm erosivity factors from a triangular rainfall distribution. GIS-AGNPS interface model consists of three subsystems; the input data processor based on a geographic information system. the models. and the post processor Land use patten at the tested watershed was classified from the Landsat TM data using the artificial neural network model that adopts an error back propagation algorithm. AGNPS model parameters were obtained from the GIS databases, and additional parameters calibrated with field data. It was then tested with ungauged conditions. The simulated runoff was reasonably in good agreement as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

Characteristics of Multi-Spatial Resolution Satellite Images for the Extraction of Urban Environmental Information

  • Seo, Dong-Jo;Park, Chong-Hwa;Tateishi, Ryutaro
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.218-224
    • /
    • 1998
  • The coefficients of variation obtained from three typical vegetation indices of eight levels of multi-spatial resolution images in urban areas were employed to identify the optimum spatial resolution in terms of maintaining information quality. These multi-spatial resolution images were prepared by degrading 1 meter simulated, 16 meter ADEOS/AVNIR, and 30 meter Landsat-TM images. Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI) and Soil Adjusted Ratio Vegetation Index (SARVI) were applied to reduce data redundancy and compare the characteristics of multi-spatial resolution image of vegetation indices. The threshold point on the curve of the coefficient of variation was defined as the optimum resolution level for the analysis with multi-spatial resolution image sets. Also, the results from the image segmentation approach of region growing to extract man-made features were compared with these multi-spatial resolution image sets.

  • PDF

Assessment of Hydrological Impact by Long-Term Land Cover Change using WMS HEC-1 Model in Gyeongan-cheon Watershed (WMS HEC-1 모형을 이용한 경안천 유역의 경년 수문변화 분석)

  • Lee, Jun-Woo;Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.107-118
    • /
    • 2003
  • The purpose of this study is to assess the hydrological impact on a watershed from long-term land cover changes. Gyeongan-cheon watershed($558.2km^2$) was selected and WMS(watershed modeling system) HEC-1 model was adopted as an evaluation tool. To identify land cover changes, five Landsat images(1980/2/15, 1986/4/15, 1990/4/26, 1996/4/26, 2000/5/17) were selected and analyzed using maximum likelihood method. As a result, urban areas have increased by 5.6% and forest areas have decreased by 6.1% between 1980 and 2000. SCS curve number increased by 9.8. To determine model parameters and evaluate HEC-1 model, five storm events(1998/5/2, 1998/8/23, 1998/9/30, 1999/5/3, 2000/7/29) were used. The simulated stream flow agreed well with the observed one with relative errors ranging from 9% to 36%. For 254 mm daily rainfall of 30 years frequency, due to the increase of urban areas peak flow increased by $455m^3/sec$ and the time of peak flow reduced about four hours for 20 years land cover changes.

  • PDF

The Use of Satellite Image for Uncertainty Analysis in Flood Inundation Mapping (홍수범람도 불확실성 해석을 위한 인공위성사진의 활용)

  • Jung, Younghun;Ryu, Kwanghyun;Yi, Choongsung;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.549-557
    • /
    • 2013
  • An flood inundation map is able to convey spatial distribution of inundation to a decision maker for flood risk management. A roughness coefficient with unclear values and a discharge obtained from the stage-discharge rating equation are key sources of uncertainty in flood inundation mapping by using a hydraulic model. Also, the uncertainty analysis needs an observation for the flood inundation, and satellite images is useful to obtain spatial distribution of flood. Accordingly, the objective of this study is to quantify uncertainty arising roughness and discharge in flood inundation mapping by using a hydraulic model and a satellite image. To perform this, flood inundations were simulated by HEC-RAS and terrain analysis, and ISODATA (Iterative Self-Organizing Data Analysis) was used to classify waterbody from Landsat 5TM imagery. The classified waterbody was used as an observation to calculate F-statistic (likelihood measure) in GLUE (Generalized Likelihood Uncertainty Estimation). The results from GLUE show that flood inundation areas are 74.59 $km^2$ for lower 5 % uncertainty bound and 151.95 $km^2$ for upper 95% uncertainty bound, respectively. The quantification of uncertainty in flood inundation mapping will play a significant role in realizing the efficient flood risk management.

Hydrologic Cycle Simulation of Urban River for Rehabilitation of Water Environment (II) - Dorimcheon Basin - (물 환경 건전화를 위한 도시하천의 물 순환 모의 (II) - 도림천 유역 -)

  • Lee, Sang-Ho;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.815-823
    • /
    • 2006
  • The hydrologic cycle in urban catchment has been changed due to the expansion of impervious area by rapid urban development. In this study, the SWMM 5 (Storm Water Management Model 5) model was used to simulate the hydrologic cycle of the Dorimcheon catchment which suffers from the distorted hydrologic cycle as a typical urban catchment. This study compare continuous simulation of urban runoff combining the channel and sewer system with that of channel only in the Dorimcheon catchment. Continuous simulations of urban runoff were performed for the upstream basin of Dorim bridge. The urban impervious regions were processed by the land use analysis from LANDSAT_TM images. It was performed from 1975 to 2000 for every five years. Surface, groundwater and wastewater runoffs were additionally included in the simulations one at a time. Such simulations made it possible to evaluate those components quantitatively. The result of continuous simulation of urban runoff combining the channel and sewer system is that peak flow and recession are well simulated. The analysis results of urbanization effect on runoff are as follows: the surface runoff in 2000 increases to 64% of the whole precipitation whereas the surface runoff in 1975 amounts to 46% of the precipitation; the groundwater runoff in 2000 amounts to 6% and shows 8% decrease during the period from 1975 to 2000.