DOI QR코드

DOI QR Code

한강수계 하천에서의 시공간적 수질변화 특성 및 연속적 인공댐호의 경험적 모델

Spatio-temporal Water Quality Variations at Various Streams of Han-River Watershed and Empirical Models of Serial Impoundment Reservoirs

  • 전혜원 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 최지웅 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 안광국 (충남대학교 생명시스템과학대학 생물과학과)
  • Jeon, Hye-Won (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Choi, Ji-Woong (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University)
  • 투고 : 2012.08.07
  • 심사 : 2012.12.12
  • 발행 : 2012.12.31

초록

본 연구에서는 2009~2010년 동안 한강 수계 인공댐 호소수 8개 지점 및 한강 본류 수계의 하천수 10개 지점의 총 18개 지점에서 인공댐 및 하류역 하천들에 대한 수질변이특성을 평가하고자 하였다. 이미 건설된 연속적 인공댐들이 상류로부터 하류까지 질소 (N), 인(P), 엽록소-a(CHL-a) 등의 화학적 수질 구배특성(Chemical gradient)에 미치는 영향을 분석하고, 수질 변수간의 경험적 모델(Empirical model)을 적용하여 하절기 몬순강우 특성 및 연별 집중강우 영향을 분석하였다. 한강수계는 상류에서 하류로 갈수록 수질이 악화되는 경향을 보였고 특히, 점오염원에 의한 오염물질의 유입은 수질변이에 가장 크게 작용하였으며, 특히 하류부의 중랑천 유입수는 수질을 급격하게 악화시키는 것으로 나타났다. 또한 하절기의 몬순강우는 하류역에서 총인(TP), 총질소(TN) 및 전기전도도(EC)값을 크게 낮추어 수질향상에 기여하였다. 5개의 인공댐들에서 총질소(TN), 총인(TP) 및 N:P 무게비에 대한 엽록소-a (CHL-a)의 경험적 모델식 평가에 따르면, 로그전환된 총인(TP)은 엽록소-a (CHL-a)농도 변이를 33.8% ($R^2$=0.338, p<0.001, 회귀식 기울기=0.710) 설명하였으나, 총질소 (TN) 변이는 21.4% 설명에 그쳤다 ($R^2$=0.214, p<0.001). 또한 N:P 무게비의 산정에 따르면, 본 인공호들에서는 모두 N:P 비가 29 이상으로 인 제한효과로 나타났으며, 총질소(TN)의 농도는 모든 수체에서 이미 $1000{\mu}g\;L^{-1}$을 상회하여 조류성장에 풍부한 것으로 나타나 엽록소-a (CHL-a)의 증감은 인(P)에 의해 조절되는 인 제한요인(P-limitation)으로 나타났다. 그러나 엽록소-a (CHLa)의 증감은 또한 개별적 인공댐에서 보여주는 바와 같이 부유물 증가에 의한 광투과도 저하, 수체류시간 감소에 의한 세척효과(Washing-out) 등도 부가적으로 영향을 미치는 것으로 나타났다. 결론적으로, 한강수계에서 하천 및 인공댐의 연속선 상에서 하천에 대한 댐의 이화학적 수질 특성에 미치는 영향은 미미한 것으로 나타났다. 반면, 유입 지천과 하천 유역의 점오염원으로부터의 방류수 유입은 이화학적 수질 변이에 크게 영향을 미치는 것으로 나타났다. 향후 연속적 인공댐의 수체에서 대형 무척추동물 및 어류와 같은 생물학적 지표를 이용한 영향평가도 수질과 같은 측면에서 연구될 필요가 잇는 것으로 사료되었다.

The objective of this study was to determine temporal patterns and longitudinal gradients of water chemistry at eight artificial reservoirs and ten streams within the Han-River watershed along the main axis of the headwaters to the downstreams during 2009~2010. Also, we evaluated chemical relations and their variations among major trophic variables such as total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (CHL-a) and determined intense summer monsoon and annual precipitation effects on algal growth using empirical regression model. Stream water quality of TN, TP, and other parameters degradated toward the downstreams, and especially was largely impacted by point-sources of wastewater disposal plants near Jungrang Stream. In contrast, summer river runoff and rainwater improved the stream water quality of TP, TN, and ionic contents, measured as conductivity (EC) in the downstream reach. Empirical linear regression models of log-transformed CHL-a against log-transformed TN, TP, and TN : TP mass ratios in five reservoirs indicated that the variation of TP accounted 33.8% ($R^2$=0.338, p<0.001, slope=0.710) in the variation of CHL and the variation of TN accounted only 21.4% ($R^2$=0.214, p<0.001) in the CHL-a. Overall, our study suggests that, primary productions, estimated as CHL-a, were more determined by ambient phosphorus loading rather than nitrogen in the lentic systems of artificial reservoirs, and the stream water quality as lotic ecosystems were more influenced by a point-source locations of tributary streams and intense seasonal rainfall rather than a presence of artificial dam reservoirs along the main axis of the watershed.

키워드

참고문헌

  1. Ahn, J.S., G.M. Lee and K.S. Jung. 2011. Problems of water use and estimation of water right in North Han River shared by North and South Korea (II) - Estimation of water right in downstream area. Magazine of Korea Water Resources Association 44(4): 315-325. https://doi.org/10.3741/JKWRA.2011.44.4.315
  2. An, K.G. 2001. Hydrological significance on interannual variability of cations, anions, and conductivity in a large reservoir ecosystem. Korean Journal of Limnology 34(1): 1-8.
  3. An, K.G. and D.S. Kim. 2003. Response of lake water quality to nutrient inputs from various streams and in-lake fishfarms. Water, Air, and Soil Pollution 149: 27-49. https://doi.org/10.1023/A:1025602213674
  4. An, K.G. and I.C. Shin. 2005. Influence of the asian monsoon on seasonal fluctuations of water quality in a mountainous stream. Korean Journal of Limnology 38(1): 54- 62.
  5. An, K.G. and J.R. Jones. 2000. Temporal and spatial patterns in ionic salinity and suspended solids in a reservoir influenced by the Asian monsoon. Hydrobiologia 436: 179-189. https://doi.org/10.1023/A:1026578117878
  6. An, K.G., J.W. Seo and S.S. Park. 2001. Influences of seasonal rainfall on physical, chemical and biological conditions near the intake tower of Taechung Reservoir. Korean Journal of Limnology 34(1): 327-336.
  7. Bae, D.Y., E.C. Yang, S.H. Jung, J.H. Lee and K.G. An. 2007. Nutrients and chlorophyll dynamics along the longitudinal gradients of Daechung Reservoir. Korean Journal of Limnology 40(2): 285-293.
  8. Brylinsky, M. and K.H. Mann. 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnology and Oceanography 18(1): 1-14. https://doi.org/10.4319/lo.1973.18.1.0001
  9. Dodds, W.K., J.R. Jones and E.B. Welch. 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32(5): 1455-1462. https://doi.org/10.1016/S0043-1354(97)00370-9
  10. Edwards, R.W. and D.T. Crisp. 1982. Ecological Implications of River Regulation in the United Kingdom, p. 843-865. In: Gravel-bed Streams (Hey, R.D., J.C. Bathust and C.R. Thorne, eds.). John Wiley and Sons, Inc., Chichester, UK.
  11. Fee, E.J. 1979. A relation between lake morphometry and primary productivity and its use in interpreting wholelake eutrophication experiments. Limnology and Oceanography 24: 401-416. https://doi.org/10.4319/lo.1979.24.3.0401
  12. Forsberg, C. and S.O. Ryding. 1980. Eutrophication parameters and trophic state indices in 30 Swedish wastelakes. Archiv fur Hydrobiologie 89: 189-207.
  13. Han, J.H., J.Y. Lee and K.G. An. 2010. Interannual and seasonal variations of water quality in terms of size dimension on multi-purpose Korean Dam Reservoirs along with the characteristics of longitudinal gradients. Korean Journal of Limnology 43(2): 319-337.
  14. Hong, S.U. 1969. Limnological comparison of the South and North-Han River. Korean Journal of Limnology 2(3): 51- 68.
  15. Jones, J.R., M.F. Knowlton and K.G. An. 1997. Developing a paradigm to study and model the eutrophication process in Korean reservoirs. Korean Journal of Limnology 30(Special Issue): 463-471.
  16. Jung, Y.G. 2011. The effects of erosion control dam construction on the aquatic ecosystem environmental change : Focus on a benthic macroinvertebrate. Master thesis, Yeungnam University, Korea
  17. Kang, D.S. and S.S. Park. 2002. Emergy evaluation perspectives of a multipurpose dam proposal in Korea. Journal of Environmental Management 66(3): 293-306.
  18. Kim, B.C. and Y.H. Kim. 2004. Phosphorus cycle in a deep reservoir in asian monsoon area (Lake Soyang, Korea) and the modeling with a 2-D hydrodynamic water quality model [CE-QUAL-W2]. Korean Journal of Limnology 37(2): 205-212.
  19. Kim, I.S. and H. Yang. 2001. Fish community changes of the Buan Dam, Korea. Korean Journal of Ecology 24(1): 45-50.
  20. Kim, J.M. 2004. Comparative limnological study on the water environment and phytoplankton dynamics of some large artificial reservoirs in Korea. Ph. D. Dissertation, Hanyang University, Korea.
  21. Kim, J.Y. 2003. The evaluation of the eutrophication for the lakes by phosphorus loading. Journal of the Environmental Sciences 12(7): 689-695. https://doi.org/10.5322/JES.2003.12.7.689
  22. Kim, S.D. and C.S. Yoo. 2004. Evaluation of the dam release effect on water quality using time series models. Journal of the Korean Society on Water Environment 20(6): 685- 691.
  23. Kim, Y.T., Y.L. Kim, N.C. Woo and S.G. Hyun. 2006. Hydrochemical characteristics and changes by rainfall in the Jungrang River. Journal of the Korean Society on Water Environment 22(4): 666-671.
  24. Krenkel, P.A., G.F. Lee and R.A. Jones. 1979. Effects of the impoundments on downstream water quality and biota. p. 289-306. In: The Ecology of Regulated Stream (Ward, J.V. and J.A. Stanford, eds.). Plenum Press, NY, USA.
  25. Lee, H.W., K.G. An and S.S. Park. 2002. Long-term annual trend analysis of epilimnetic water quality and their longitudinal heterogeneities in Lake Soyang. Korean Journal of Limnology 35(1): 36-44.
  26. Macan, T.T. 1961. Factors that limit the range of freshwater animals. Biological Reviews 36: 151-198. https://doi.org/10.1111/j.1469-185X.1961.tb01582.x
  27. Macan, T.T. 1974. Freshwater Ecology. John Wiley and Son, Inc., NY.
  28. Merritt, R.W., D.H. Ross and G.J. Larson. 1982. Influence of stream temperature and seston on the growth and production of over Wintering larval black flies (Diptera: Simuliidae). Ecology 63(5): 1322-1331. https://doi.org/10.2307/1938860
  29. Moss, B. 1980. Ecology of fresh waters, Blackwell Scientific Publications, London.
  30. Nichols, S., R. Norris, W. Maher and M. Thoms. 2006. Ecological effects of serial impoundment on the Cotter River, Australia. Hydrobiologia 572: 225-273.
  31. Park, H.K., M.S. Byeon, M.J. Choi and Y.J. Kim. 2008. The effect factors on the growth of phytoplankton and the sources of organic matters in downstream of South-Han River. Journal of the Korean Society on Water Environment 24(5): 556-562.
  32. Park, J.C., J.W. Park, J.K. Shin and H.M. Lee. 2005. Dynamics of high turbid water caused by heavy rain of monsoon and typhoon in a large Korean reservoir (Andong Reservoir). Korean Journal of Limnology 38(1): 105-117.
  33. Park, J.E. 2006. A modeling study for the impact prediction of serial impoundments on downstream temperature distribution. Master thesis, Ewha Womans University, Korea.
  34. Park, S.M. and Y.K. Shin. 2011. The impact of monsoon rainfall on the water quality in the upstream watershed of Southern Han River. Korean Journal of Limnology 44(4): 373-384.
  35. Park, Y.M., E.H. Lee, S.J. Lee and K.G. An. 2009. Trophic state characteristics in Topjeong Reservoir and their relations among major quality parameters. Korean Journal of Limnology 42(3): 382-393.
  36. Rada, R.G. and J.C. Wright. 1979. Factors affecting nitrogen and phosphorus levels in canyon ferry reservoir Montana and its effluent waters. Northwest Science 53: 213-220.
  37. Shin, J.K., S.J. Hwang and K.J. Cho. 2003. Assessment of water quality in Pyeongtaek Reservoir and its main tributaries. Korean Journal of Limnology 36(1): 38-47.
  38. Sohn, B.J. and J.W. Han. 1995. Some climatological features associated with extremes of east asian summer monsoon. Journal of the Korean Meteorological Society 31(4): 477- 488.
  39. Thornton, K.W. 1990. Perspectives on reservoir limnology, p. 1-4. In: Reservoir Limnology: ecological perspectives (Thornton et al., eds.). John Wiley and Sons, Inc., Chichester, UK.
  40. Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. https://doi.org/10.1139/f80-017
  41. Ward, J.V. 1982. Ecological aspects of stream regulation: responses in downstream lotic reaches. Water Pollution and Management Reviews 2: 1-26.
  42. Ward, J.V. and J.A. Stanford. 1983. The serial discontinuity concept of lotic ecosystems, p. 29-42. In: Dynamics of Lotic Ecosystems (Fontaine, T.D. and S.M. Bartell, eds.). Ann Arbor Science, Ann Arbor, USA.
  43. Wetzel, R.G. 1990. Reservoir ecosystem: Conclusions and speculations, p. 227-238. In: Reservoir Limnology: ecological perspectives (Thornton et al., eds.). John Wiley and Sons, Inc., Chichester, UK.