DOI QR코드

DOI QR Code

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks

저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구

  • Noh, Yoorae (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Sang-Hyo (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Sung-Uk (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Park, Joonhong (Dept. of Civil and Environmental Engineering, Yonsei University)
  • 노유래 (연세대학교 토목환경공학과) ;
  • 김상효 (연세대학교 토목환경공학과) ;
  • 최성욱 (연세대학교 토목환경공학과) ;
  • 박준홍 (연세대학교 토목환경공학과)
  • Received : 2016.12.03
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

안전한 수돗물 공급을 위해 정수처리장부터 최종 단계인 수도꼭지까지 일정 수준 이상의 잔류염소농도가 유지되어야 한다. 하지만 국내 문헌에 따르면 상수공급의 전체 과정 중에 30-60%의 잔류염소가 소실되고, 이에 대한 주요 원인으로 정수처리 과정에서 염소 사용량 감소 추세, 급수배관 내에서 염소분해 손실, 여름철의 높은 온도에 의한 잔류염소 분해 속도 증가, 급수배관의 노후화에 따른 잔류염소 손실, 저수조 내 저장 시 잔류염소 감소 발생 등이 파악되었다. 이러한 이유로 저수조를 거치는 급수 방식의 경우 최종 수도꼭지의 잔류염소 농도가 기준치보다 낮아질 개연성이 높고, 용량과 체류시간을 단순히 고려하는 기존의 저수조 설계 방식으로 인해서 수돗물 공급의 안전성에 대한 우려가 존재한다. 이의 개선 방안 도출을 위해서 본 연구에서는 저수조 내 잔류염소 감소에 관여하는 주요 기작들인 수체 내 잔류염소 분해, 벽체 표면 흡착, 그리고 증발에 의한 물질전달을 수학적으로 묘사하는 공식들과 계수 값들을 문헌을 통해서 획득하고, 일반적 저수조 조건에서 모델 시뮬레이션을 수행하였다. 그 결과 저수조에 유입되는 수돗물 내 유기물 농도, 수돗물이 저수조에 유입되는 수리학적조건(난류 정도), 그리고 저수조 벽체 표면 재질의 흡착능 등이 저수조 내 잔류염소 감소에 주요 영향 인자들임을 알 수 있었다. 본 연구에서 획득된 결과들은 잔류염소 감소를 최소화하여 안전한 수돗물 공급을 가능하게 하는 새로운 저수조 설계기법이나 기술 개발에 유용하게 활용될 것이다.

Keywords

References

  1. 국토교통부(2016), 주택건설기준 등에 관한 규정 제35조 (비상급수시설).
  2. 곽필재, 황재운, 김석구, 이현동(2005), 지하저수조에서의 수리적 거동과 수질변화 특성. 2005 년도 대한토목학회 정기 학술대회, 364-367.
  3. 기상성(2016).
  4. 김도환, 이두진, 김경필, 배철호, 주혜은(2010), 배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과 분석. 대한환경공학회지 제, 32(10).
  5. 박현건, 류승철, 전수임(2009), 연구논문: 저수조의 효율적 관리를 위한 수질실태에 관한 연구. 한국환경과학회지, 18(12), 1339-1347.
  6. 상수도사업본부 수질과(2006), 정수장 수질 검사 현황(1월-8월), 서울시 상수도사업본부.
  7. 상수도사업본부 수질과(2015a), 정수장 수질 검사 현황(1월-12월), 서울시 상수도사업본부.
  8. 상수도사업본부 수질과(2015b), 수도꼭지 수질 검사 현황(1월-12월), 서울시 상수도사업본부.
  9. 상수도사업본부 수질과(2016a), 정수장 수질 검사 현황(1월-8월), 서울시 상수도사업본부.
  10. 상수도사업본부 수질과(2016b), 수도꼭지 수질 검사 현황(1월), 서울시 상수도사업본부.
  11. 상수도사업본부 수질과(2016c), 수도꼭지 수질 검사 현황(8월), 서울시 상수도사업본부.
  12. 서울정책아카이브(2016), 직결급수체계 전환, 상수도사업본부 급수부 급수계획과.
  13. 송영일, 안수나, 안성윤, 서대근, 조혁진, 이재성, 최일환. 신창수, 이희숙(2016), 논문 (論文): 관망에서의 소독부산물 변화와 관련 영향인자들의 상관관계 분석. 대한환경공학회지, 38(2), 63-70. https://doi.org/10.4491/KSEE.2016.38.2.63
  14. 전미희(2015), 대형건축물 저수조 수질현황 및 관리방안 연구. 경상남도 보건환경연구원.
  15. 정원식, 김이태, 이현동, 유명진(2004), 논문: 잔류염소 분해 특성을 고려한 소규모 배수지의 수질관리-서울시 영등포 정수사업소 배수계통의 화곡배수지를 대상으로 한 현장연구. 서울도시연구, 5(2), 27-43.
  16. 한국방재안전학회(2016), 방재안전측면에서의 공동주택 저수조 적정용량 평가를 위한 연구.
  17. 한국수자원공사(1999), 수돗물의 2차오염 방지기술.
  18. 한국수자원공사(2014), 건강한 수돗물 공급 시범사업 보도자료.
  19. 한국시설안전공단(2015), 잔류염소 감소계수를 이용한 상수관망 잔류염소 분석 및 재염소 주입량 예측.
  20. 환경부(2009), 수도시설의 청소 및 위생관리 등에 의한 규칙.
  21. 환경부(2010), 상수도시설기준.
  22. 환경부(2014), 2013 상수도통계.
  23. Coulson, J. M., Richardson, J. F. (1964), Chemical Engineering: Fluid Flow. Pergamon.
  24. Cussler, E. L. (1997), Diffusion: Mass Transfer in Fluid Systems (2nd ed.). New York: Cambridge University Press. ISBN 0-521-45078-0.
  25. Feben, D., Taras, M. J., Faber, H. A., Hedgepeth, L. L. (1951), Studies on Chlorine Demand Constants [with Discussion]. Journal (American Water Works Association), 43(11), 922-932.
  26. Geldreich, E. E., Fox, K. R., Goodrich, J. A., Rice, E. W., Clark, R. M., Swerdlow, D. L. (1992), Searching for a water supply connection in the Cabool, Missouri disease outbreak of Escherichia coli 0157: H7. Water Research, 26(8), 1127-1137. https://doi.org/10.1016/0043-1354(92)90150-3
  27. Greenwood, N. N., Earnshaw, A. (1984), Chemistry of the Elements.
  28. GSI Environmental (2014), GSI Chemical Database.
  29. Kennedy, M. S., Moegling, S., Sarikelle, S., Suravallop, K. (1993), Assessing the effects of storage tank design on water quality. Journal-American Water Works Association, 85, 78-78. https://doi.org/10.1002/j.1551-8833.1993.tb06027.x
  30. Kiene, L., Lu, W., Levi, Y. (1993, June), Parameters governing the rate of chlorine decay throughout distribution system. In Proceedings of AWWA Annual Conference, Water Quality (pp. 6-10).
  31. Kruger, E., Viljoen, J., Lachmann, G., Pienaar, J. J. (2000), Chlorine decay on concrete surfaces and losses to the atmosphere in water storage facilities.
  32. Mathieu, L., Block, J. C., Dutang, M., Maillard, J. (1993), Control of biofilm accumulation in drinking-water distribution systems. WATER SUPPLY-OXFORD-, 11, 365-365.
  33. Murphy, S. B. (1985), Modeling chlorine concentrations in municipal water systems (Doctoral dissertation, Montana State University-Bozeman, College of Engineering).
  34. NIST (2015). The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. Retrieved 2015-09-25.
  35. Parent, A., Saby, S., Sardin, M., Block, J. C., Gatel, D. (1996a, November). Contribution of biofilms to the chlorine demand of drinking water distribution systems. In Proceedings of AWWA 1996 Water Quality Technology Conference, Part II (pp. 17-21).
  36. Parent, A., Fass, S., Dincher, M. L., Reasoner, D., Gatel, D., Block, J. C. (1996b), Control of coliform growth in drinking water distribution systems. Water and Environment Journal, 10(6), 442-445. https://doi.org/10.1111/j.1747-6593.1996.tb00078.x
  37. Powell, J. C., Hallam, N. B., West, J. R., Forster, C. F., Simms, J. (2000), Factors which control bulk chlorine decay rates. Water Research, 34(1), 117-126. https://doi.org/10.1016/S0043-1354(99)00097-4
  38. Rossman, L. A. (2006), The effect of advanced treatment on chlorine decay in metallic pipes. Water Research, 40(13), 2493-2502. https://doi.org/10.1016/j.watres.2006.04.046
  39. Rossman, L. A., Brown, R. A., Singer, P. C., Nuckols, J. R. (2001). DBP formation kinetics in a simulated distribution system. Water Research, 35(14), 3483-3489. https://doi.org/10.1016/S0043-1354(01)00059-8
  40. Rossman, L. A., Clark, R. M., Grayman, W. M. (1994), Modeling chlorine residuals in drinking-water distribution systems. Journal of Environmental Engineering, 120(4), 803-820. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(803)
  41. Schwarzenbach, R. P., Gschwend, P. M., Imboden, D. M. (2005), Environmental Organic Chemistry. John Wiley & Sons.
  42. Staudinger, J., Roberts, P. V. (1996), A critical review of Henry's law constants for environmental applications. Critical Reviews in Environmental Science and Technology, 26(3), 205-297. https://doi.org/10.1080/10643389609388492
  43. Vasconcelos, J. J., Boulos, P. F. (1996), Characterization and modeling of chlorine decay in distribution systems. American Water Works Association.
  44. Vasconcelos, J. J., Rossman, L. A., Grayman, W. M., Boulos, P. F., Clark, R. M. (1997), Kinetics of chlorine decay. Journal-American Water Works Associationl, 89(7), 54.
  45. Wable, O., Dumoutier, N., Duguet, J. P., Jarrige, P. A., Gelas, G., Depierre, J. F. (1991), Modeling chlorine concentrations in a network and applications to Paris distribution network. Proc. Water Quality Modeling in Distribution Systems. AWWA Research Foundation, US EPA, Cincinnati, OH.
  46. William W. Nazaroff, Lisa Alvarez-Cohen (2001), Environmental Engineering Science.
  47. Zhang, G. R., Kiene, L., Wable, O., Chan, U. S., Duguet, J. P. (1992), Modelling of chlorine residual in the water distribution network of Macao. Environmental Technology, 13(10), 937-946. https://doi.org/10.1080/09593339209385229