• Title/Summary/Keyword: 수소손상

Search Result 166, Processing Time 0.026 seconds

$H_2O_2$ Induces Apoptosis in Calf Pulmonary Artery Endothelial Cells (폐동맥내피 세포에서 $H_2O_2$에 의한 세포자사)

  • 김범식;정주호
    • Journal of Chest Surgery
    • /
    • v.33 no.12
    • /
    • pp.935-940
    • /
    • 2000
  • 배경: 폐혈관 손상에 관한 기전은 여러 보고에도 불구하고 자세히 밝혀지지는 않았다. 최근 산화성 스트레스 질환에 관여하는 과산화 수소($H_2O$$_2$) 등의 활성 산소족(reactive oxygen species)은 세포손상과 세포자사(apoptosis)에 중요한 역할을 한다고 알려져 있다. 본 연구에서는 $H_2O$$_2$에 의하여 유발된 산화성 스트레스가, 폐혈관 손상 기전의 하나로 추측되고 있는 세포자사를 야기하는지를 연구하였다. 대상 및 방법: 소의 폐동맥에서 유래된 calf pupmonary artery endothelial cell line(CPAE)를 이용하였다. $H_2O$$_2$에 의한 세포 독성을 측정하기 위하여, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide(MTT) assay를 시행하였다. $H_2O$$_2$에 의한 세포의 형태학적 변화는 도립 현미경으로 분석하였다. 세포자사를 확인하기 위하여 terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay와 4,6-diamidino-2-phenylindole(DAPI) staining 방법 및 flow cytometry 분석를 시행하였다. 결과: $H_2O$$_2$에 의한 세포 생존율은, 대조군(100%)과 비교하여 3시간 실험군에서 10$\mu$M에서 약 70%, 50 $\mu$M에서 약 33%, 100 $\mu$M에서 약 26%, 500 $\mu$M에서 약 28%이였다. $H_2O$$_2$투여시 세포돌기 감소, 세포 축소, 세포질 응축과 불규칙한 형태 등의 세포자사에 나타나는 형태학적 변화를 나타내었다. TUNEL assay와 DAPI staining에서도 세포자사에 특징적으로 나타나는 핵응축과 핵분절 등의 소견을 나타내었다. Flow cytometry 분석 시에도 $H_2O$$_2$투여시 sub G$_1$분절의 증가와 G$_1$분절의 감소 등의 세포자사 양상이 확인되었다. 결론: 형태학적 분석과 생화학적 분석을 통하여, $H_2O$$_2$는 CPAE에서 세포자사를 야기함을 확인하였다. 이러한 결과는 폐혈관 손상의 기전에 $H_2O$$_2$에 의한 세포자사가 부분적으로 관여할 가능성을 제시한다.

  • PDF

The DNA Damage by Fish Oil Perokidation Products 1. DNA Damage by the Peroxidation Products of Total Lipid Fraction Extracted from Mackerel (어유산화생성물의 DNA 손상작용 1. 총지질산화생성물의 DNA 손상작용)

  • KANG Jin-Hoon;BYUN Han-Seok;LEE Yong-Woo;KIM Seon-Bong;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.213-218
    • /
    • 1987
  • The DNA damage mechanism by fish oil peroxidation was investigated through the model system of a DNA-mackerel lipid at $37^{\circ}C$. Mackerel lipid peroxidation products induced a great DNA damage with the increment of its concentration, and such DNA damage in all systems examined occurred below $100millieq{\cdot}/kg$ in POV (peroxide value) Singlet oxygen $(^1O_2)$ and superoxide anion${\cdot}O_2^-$ greatly participated in the DNA damage during peroxidation of mackerel lipid, while hydrogen peroxide$(H_2O_2)$ and hydroxyl radical $({\cdot}OH)$ did little show the DNA damage. From the results of the addition of several active oxygen scavengers to the DNA-lipid systems, singlet oxygen ana superoxide anion greatly affected to the increase of POV ana to the DNA damage by mackerel lipid peroxidation, respectively. It indicates that there was a close relationship between the effects of active oxygens in the mackerel lipid peroxidation and its DNA damage mechanism.

  • PDF

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.

Experimental Investigation on the Freezing Condition of Printed Circuit Heat Exchanger for Cryogenic Liquid Hydrogen Vaporizer (극저온 액체수소 기화기용 인쇄기판 열교환기의 동결 조건에 관한 실험적 연구)

  • WOOKYOUNG KIM;BOKYEM KIM;SANGHO SOHN;KONG HOON LEE;JUNGCHUL KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.240-248
    • /
    • 2024
  • The purpose of this study is to investigate the freezing phenomena in printed circuit heat exchanger (PCHE) for cryogenic liquid hydrogen vaporizer. Local freezing phenomena in hot channels should be avoided in designing PCHE for cryogenic liquid hydrogen vaporizer. Hence, the flow and thermal characteristics of PCHE is experimentally investigated to figure out the conditions under when freezing occurs. To conduct lab-scale PCHE experiment, liquid nitrogen is used as a working fluid in cold channels instead of using liquid hydrogen. Glycol water is used as a working fluid in hot channels. Based on the experimental data, ratio between mass flow rates of cold channels and that of hot channels is proposed as contour map to avoid the freezing phenomena in PCHE.

Antioxidant Activity of Jakwangchalbyeo Extracts in H4IIE Cells (자광찰벼 추출물의 H4IIE 세포에서의 항산화 효과)

  • Chi Hee-Youn;Lee Chang-Ho;Kim Jung-Tae;Kim Sun-Lim;Kim Kwang-Ho;Chung Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.8-11
    • /
    • 2005
  • Experiments were performed to investigate the effects of ethanol fraction of three different rice (Oryzasativa L. var. japonica) grain (Jakwangchalbyeo, red-pericarp glutinous rice; Hwasunchalbyeo, white-pericarp glutinous rice; Ilpumbyeo, white-pericarp non-glutinous rice) extracts on the protection of oxidative stress. Antioxidant activities of ethanol fraction of rice grain extracts were made with MTT cell viability assay in H4IIE cell that is challenged with hydrogen peroxide. Hwasunchalbyeo extract and Ilpumbyeo extract did not show any significant protective effects on the $H_2O_2-induced$ oxidative stress in B4IIE cells, and Jakwangchalbyeo extract improved the cell viability up to $82\%\;and\;74\%$ at concentration of $100{\mu}g/mL$ for 5 h and 24 h treatment, respectively. In conclusion, red-pericarp Jakwangchalbyeo extract as compared with other rice extracts exerted significant inhibitory effects on the hydyogen peroxideinduced oxidative stress in the H4IIE cells.

Improved Characteristics in AlGaN/GaN-on-Si HFETs Using Sacrificial GaOx Process (산화갈륨 희생층을 이용한 AlGaN/GaN-on-Si HFET의 특성 개선 연구)

  • Lee, Jae-Gil;Cha, Ho-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.33-37
    • /
    • 2014
  • We have developed a novel passivation process employing a sacrificial gallium oxide process in order to recover the surface damage in AlGaN/GaN HFETs. Even with a conventional prepassivation process, surface damage during high temperature ohmic annealing cannot be avoided completely. Therefore, it is necessary to recover the damaged surface to avoid the characteristic degradation. In this work, a sacrificial gallium oxide process has been proposed in which the damaged surface after ohmic annealing was oxidized by oxygen plasma treatment and thereafter etched back using HCl. As a result, the leakage current was dramatically reduced and thus the subthreshold slope was significantly improved. In addition, the maximum drain current level was increased from 594 to 634 mA/mm. To verify the effects, the surface conditions were carefully investigated using X-ray photoelectron spectroscopy.

Field emission properties of diamond-like carbon films deposited by ion beam sputtering (이온빔 스퍼터링으로 제작된 다이아몬드성 카본 필름의 전계 방출 특성)

  • 안상혁;이광렬;전동렬
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Field emission behaviors from diamond-like carbon films were investigated. The films were deposited on n-type Si wafer by ion beam sputtering method using 3 cm Kaufman type ion source. Regardless of the film thicknesses and atomic bond structure, the emission current was much enhanced by electrical breakdown between anode and the film surface. The effective work function was estimated to be about 0.1 eV. In order to identify the emission site, tungsten tip was scanned the damaged region damaged region but localized to a specific site. Analysis using Auger electron spectroscopy and SEM shows that SiC compound was not a sufficient condition for the electron emission. This result showed that the enhanced emission was mainly due to the changes in the chemical bond of the damaged region rather than the enhanced electric field caused by the morphological change.

  • PDF

The Role of Active Oxygen on DNA Damage by Linoleic Acid Peroxidation Products (Linoleic acid 산화생성물(酸化生成物)의 DNA손상작용에 있어서의 활성산소종(活性酸素種)의 역할)

  • Kim, Seon-Bong;Kang, Jin-Hoon;Lee, Yong-Woo;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 1987
  • The present paper was carried out to investigate the effects of active oxygen radicals on the DNA damage by linoleic acid peroxidation by using active oxygen scavengers in a linoleic acid-DNA system. DNA was greatly damaged by linoleic acid peroxidation, and the DNA damage was inhibited by the addition of active oxygen scavengers. Among active oxygen scavengers tested, ${\alpha}-tocopherol$ and superoxide dismutase greatly inhibited the DNA damage, but catalase and tris (hydroxymethyl) aminomethane didn't show such effects. Accordingly, singlet oxygen and superoxide anion greatly affected to the DNA damage occurring during linoleic acid peroxidation, and hydrogen peroxide was shown to participate in DNA damage in the early stage of peroxidation. And, the DNA damage by active oxygen radicals was mainly induced in the early stage of linoleic acid peroxidation.

  • PDF

Hydrogen Degradation of Pt/SBT/Si, Pt/SBT/Pt Ferroelectric Gate Structures and Degradation Resistance of Ir Gate Electrode (Pt/SBT/Si, Pt/SBT/Pt 강유전체 게이트 구조에서 수소 열화 현상 및 Ir 게이트 전극에 의한 열화 방지 방법)

  • 박전웅;김익수;김성일;김용태;성만영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.49-54
    • /
    • 2003
  • We have investigated the effects of hydrogen annealing on the physical and electrical properties of $SrBi_{2}Ta_{2}O_9(SBT)$ thin films in the Pt/SBT/Si (MFS) structure and Pt/SBT/Pt (MFM) one, respectively. The microstructure and electrical characteristics of the SBT films were deteriorated after hydrogen annealing due to the damage of the SBT films during the annealing process. To investigate the reason of the degradation of the SBT films in this work, in particular, the effect of the Pt top electrodes, SBT thin films deposited on Si, Pt, respectively, were annealed with the same process conditions. From the XRD, XPS, P-V, and C-V data, it was seen that the SBT itself was degraded after $H_2$ annealing even without the Pt top electrodes. In addition, the degradation of the SBT films after $H_2$ annealing was accelerated by the catalytic reaction of the Pt top electrodes which is so-called hydrogen degradation. To prevent this phenomenon, we proposed the alternative top electrode material, i.e. Ir, and the electrical properties of the SBT thin films were examined in the $Ir/IrO_2/SBT/IrO_2$ structures before and after the H$_2$ annealing and recovery heat-treatment processes. From the results of the P-V measurement, it could be concluded that Ir is one of the promising candidate as the electrode material for degradation resistance in the MFM structure using SBT thin films.

  • PDF