Today, people share information and communicate with others using various information and communication media such as e-mail, smartphones, SNS, etc. However, it is being used in malicious attacks to send a large amount of illegal spam or to use it for fraud by using illegally collected personal information and devices that are vulnerable to security. Illegal spam, smishing, and fraudulent mail(SCAM) cause a lot of direct and indirect damage to companies and users, including not only social costs such as mental fatigue, but also unnecessary consumption of IT infrastructure resources and economic losses. Although there are regulations related to spam, violators of the law are still on the rise by circumventing the law, and victims are constantly occurring, so it is necessary to review what the problem is. This study examined domestic and foreign spam-related regulations and spam-related response activities, identified problems, and suggested improvement countermeasures. Through this study, it was intended to suggest directions for improving spam-related systems in order to block illegal spam and prevent fraudulent damage.
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.603-608
/
2024
Nonresponse and missing values are caused by sample dropouts and avoidance of answers to surveys. In this case, problems with the possibility of information loss and biased reasoning arise, and a replacement of missing values with appropriate values is required. In this paper, as an alternative to missing values imputation, we compare several replacement methods, which use mean, linear regression, random forest, K-nearest neighbor, autoencoder and denoising autoencoder based on deep learning. These methods of imputing missing values are explained, and each method is compared by using continuous simulation data and real data. The comparison results confirm that in most cases, the performance of the random forest imputation method and the denoising autoencoder imputation method are better than the others.
The Journal of Korean Institute of Communications and Information Sciences
/
v.19
no.8
/
pp.1503-1517
/
1994
Intelligent Motion Planning System(IMPS) is presented for a robot to achieve an efficient path toward the given target point in two dimensional unknown environment is constructed with unrestricted obstacle shapes. IMPS consists of three components for making intelligent motion. These components are real-time motion planning algorithm based on a discontinous boundary method, fuzzy neural network decision system for heuristic knowledge representation, and world modeling with forgetting and reinforcing memory cells. First of all, in real-time motion planning algorithm, the behavior-based architectural method is used to generate subgoal. A behavior generates a subgoal independently by using the method of discontinuous boundary in sensed area. The discontinuous boundary method is a new proposed fast obstacle avoidance algorithm. The second component is fuzzy neural network decision system for accomplishing the subgoal. The heuristic rules are imbedded on the fuzzy neural network to make an intelligent decision. The last one is a forgetting, reinforcing memory technique for the construction of external world map. The activation values of all activated memory cells in grid space are decreased monotonically and after all they are burned out. Therefore, after sufficient journey, robot can have a stationary world map even if the dynaic obstacles exist. Using the IMPS, several simulations show the efficient achievement of target point in unknown enviroment with obstcles of various shapes.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.42
no.12
/
pp.149-158
/
2005
This paper proposes a congestion avoidance algorithm which provides stable throughput and transmission rate regardless of buffer size by limiting the TCP congestion window in fixed bandwidth networks. Additive Increase, Multiplicative Decrease (AIMD) is the most commonly used congestion control algorithm. But, the AIMD-based TCP congestion control method causes unnecessary packet losses and retransmissions from the congestion window increment for available bandwidth verification when used in fixed bandwidth networks. In addition, the saw tooth variation of TCP throughput is inappropriate to be adopted for the applications that require low bandwidth variation. We present an algorithm in which congestion window can be limited under appropriate circumstances to avoid congestion losses while still addressing fairness issues. The maximum congestion window is determined from delay information to avoid queueing at the bottleneck node, hence stabilizes the throughput and the transmission rate of the connection without buffer and window control process. Simulations have performed to verify compatibility, steady state throughput, steady state packet loss count, and the variance of congestion window. The proposed algorithm can be easily adopted to the sender and is easy to deploy avoiding changes in network routers and user programs. The proposed algorithm can be applied to enhance the performance of the high-speed access network which is one of the fixed bandwidth networks.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.43
no.10
s.352
/
pp.8-17
/
2006
Recently, the high-speed Internet users increase rapidly and broadband networks have been widely deployed. However, the current TCP congestion control algorithm was designed for relatively narrowband network environments, and thus its performance is inefficient for traffic transport in broadband networks. To remedy this problem, the TCP having an enhanced congestion control algorithm is required for broadband networks. In this paper, we propose an improved TCP congestion control that can sufficiently utilize the large available bandwidth in broadband networks. The proposed algorithm predicts the available bandwidth by using ACK information and RTT variation, and prevents large packet losses by adjusting congestion window size appropriately. Also, it can rapidly utilize the large available bandwidth by enhancing the legacy TCP algorithm in congestion avoidance phase. In order to evaluate the performance of the proposed algorithm, we use the ns-2 simulator. The simulation results show that the proposed algorithm improves not only the utilization of the available bandwidth but also RTT fairness and the fairness between contending TCP flows better than the HSTCP in high bandwidth delay product network environment.
Korea has passed the Act on the Integrated Control of Pollutant-Discharging Facilities in 2015, and the integrated environmental management under the BAT standard is underway. To summarize the nature of integrated environmental management, it is the regulation by the integration of the management of the multi-pollutant source and the technical standard of BATs. In general, in environmental economics, regulation-based on technical standards are known to be inefficient. This paper attempts to evaluate the efficiency of BAT standards from an economic point of view. A simple multi-pollutant model demonstrates that the inefficiency of the environmental tax with imperfect information in a single pollutant situation is amplified under multi-pollutant conditions. The simultaneous introduction of BAT and IPPC can be partially explained by this logic. It is also highlighted by the strengthening of BAT standards by EU, as a countermeasure to the potential deterioration of air quality caused by the change of effective environmental taxes accompanying the fuel and emission price changes.
Using Herzberg's motive hygiene theory, this study also investigated the influence of motivation factors and hygiene factors on acceptance and resistance of mobile facial recognition payment services, and the influence of consumer innovation as a parameter on acceptance and resistance from motivation factors and hygiene factors. A survey was conducted on Chinese users who had experience using mobile payment services. IBM SPSS Statistics 26 and SmartPLS 3.0 were used for statistical analysis. As a result of the analysis, the motivating factors of mobile facial recognition payment services have a positive (+) impact on acceptance, and there were no significant results on resistance. In addition, hygiene factors have been shown to have negative (-) effects on acceptance and positive (+) effects on resistance. Consumer innovation, which is a parameter in relation to motivation factors and acceptance and resistance, had a partial mediation effect, and a partial mediation effect was also seen in the relationship between hygiene factors and resistance, but no mediation effect was found in the relationship between hygiene factors and acceptance. The motivating factors found through research results such as rapidity, ubiquity, perceived usability, perceived ease of use, privacy concerns, security, status quo inertia, use barriers, and loss avoidance, which are factors of non-contact and hygiene, can be used as basic data for activating mobile facial recognition payment services.
Recently, novel viral infections such as COVID-19 have spread and pose a serious public health problem. In particular, these diseases have a fatal effect on the elderly, threatening life and causing serious social and economic losses. Accordingly, applications such as telemedicine, healthcare, and disease prevention using the Internet of Things (IoT) and artificial intelligence (AI) have been introduced in many industries to improve disease detection, monitoring, and quarantine performance. However, since existing technologies are not applied quickly and comprehensively to the sudden emergence of infectious diseases, they have not been able to prevent large-scale infection and the nationwide spread of infectious diseases in society. Therefore, in this paper, we try to predict the spread of infection by collecting various infection information with regional limitations through a virus disease information collector and performing AI analysis and severity matching through an AI broker. Finally, through the Korea Centers for Disease Control and Prevention, danger alerts are issued to the elderly, messages are sent to block the spread, and information on evacuation from infected areas is quickly provided. A realistic elderly support system compares the location information of the elderly with the information of the infected area and provides an intuitive danger area (infected area) avoidance function with an augmented reality-based smartphone application. When the elderly visit an infected area is confirmed, quarantine management services are provided automatically. In the future, the proposed system can be used as a method of preventing a crushing accident due to sudden crowd concentration in advance by identifying the location-based user density.
With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.
Recently strategic alliance between business firms has become prevalent to overcome increasing competitive threats and to supplement resource limitation of individual firms. As one of allianced sales promotion activities, a new type of discount program, so called "Alliance Card Discount", is introduced with the partnership of credit cards and loyalty cards. The program mainly pursues short-term sales growth by larger discount scheme while spends less through cost share among alliance partners. Thus this program can be regarded as cost efficient discount promotion. But because there is no solid evidence that it can really deliver profitable sales growth, an empirical study for its effects on sales and profit should be conducted. This study has two basic research questions concerning the effects of allianced discount program ; 1)the possibility of sales increase 2) the profitability of the discount driven sales. In F&B industry, sales increase mainly comes from increased guest count. Especially in family restaurants, to increase the number of guests we need to enlarge the size of visitor group (number of visitors for one group) because customers visit by group in a special occasion. And because they pay the bill by group(table), the increase of sales per table is a key measure for sales improvement. The past researches for price & discount sensitivity and reference discount rate explain that price sensitive consumers have narrow reference discount zone and make rational purchase decision. Differently from all time discount scheme of regular sales promotions, the alliance card discount program only provides the right to get discount like discount coupon. And because it is usually once a month opportunity given by the past month usage level, customers tend to perceive alliance card discount as a rare chance to get. So that we can expect customers try to maximize the discount effect when they use the limited discount opportunity. Considering group visiting practice and low visit frequency of family restaurants, the way to maximize discount effect should be the increase the size of visit group. And their sensitivity to discount and rational consumption behavior defer the additional spending for ordering high price menu, even though they get considerable amount of savings from the discount. From the analysis of sales data paid by alliance discount cards for four months, we found the below. 1) The relation between discount rate and number of guest per table is positive : 25% discount results one additional guest 2) The relation between discount rate and the spending per guest is negative. 3) However, total profit amount per table is increased when discount rate is increased. 4) Reward point accumulation & redemption did not show any significant relationship with the increase of number of guests. These results suggest that the allianced discount program substantially contributes to sales increase and profit improvement by increasing the number of guests per table. Though the spending per guest is decreased by discount rate increase, the total amount of profit per table is improved. It seems the incremental profit by increased guest count offsets the profit decrease. Additional intriguing finding is the point reward system does not have any significant impact on the increase of number of guest, even if the point accumulation & redemption of loyalty program are usually regarded as another saving offers by customers. In sum, because it is proved that allianced discount program with credit cards and loyalty cards is effective to both sales drive and profit increase, the alliance card program could be recommended as strategically buyable program.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.