• Title/Summary/Keyword: 선형행렬 부등식

Search Result 142, Processing Time 0.023 seconds

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Tracking Control of a Sampled Nonlinear System via Fuzzy Logic Theory (퍼지제어 이론을 이용한 샘플된 비선형 시스템의 추적제어에 대한 연구)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.69-75
    • /
    • 2003
  • This paper presents a fuzzy logic based approach to tracking control of a sampled nonlinear system. It is assumed that the plant to be controlled is under both the internal uncertainty and the external disturbances. Discrete-time adaptive fuzzy control method is proposed and its parameters are determined by the recently-spolighted convex optimization technique called LMI. Finally, the computer simulation is tarried out to verify the effectiveness of the proposed method.

Optimal Fuzzy Control of Nonlinear Systems Described by Takagi-Sugeno Fuzzy Model (Takagi-Sugeno 퍼지 모델로 표현된 비선형 시스템의 최적 퍼지 제어)

  • Park, Yon-Mook;Park, Joo-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2853-2855
    • /
    • 1999
  • 본 논문은 TS(Takagi-Sugeno) 퍼지 모델로 표현된 비선형 시스템의 최적 퍼지 제어에 관한 새로운 설계 방법론을 제시하며, 최적 TS 퍼지 제어기의 매개 변수들을 설정하는 문제가 선형 행렬 부등식 문제로 표현될 수 있음을 보인다.

  • PDF

Robust Digital Redesign for Observer-based System (관측기 기반 시스템에 대한 강인 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.285-290
    • /
    • 2007
  • In this paper, we presents robust digital redesign (DR) method for observer-based linear time-invariant (LTI) system. The term of DR involves converting an analog controller into an equivalent digital one by considering two condition: state-matching and stability. The design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed the uncertain parts of given observer-based system more precisely, When a sampling period is sufficiently small, the conversion of a analog structured uncertain system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

A Study on the Stability of Takagi-Sugeno Fuzzy Control System (어핀 Takagi-Sugeno 퍼지 제어 시스템의 안정도에 대한 연구)

  • Kim, Eun-Tai;Kim, Dong-Yon;Park, Hyun-Sik;Park Mig-Non
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.56-64
    • /
    • 1999
  • In this paper, a novel approach to the stability analysis of the continuous affine Takagi-Sugeno fuzzy control systems is proposed. The suggested analysis method is easily implemented by the recently spotlighted convex optimization techniques called Linear Matrix Inequalities (LMI). First, it derives the stability condition under which the affine Takagi-Sugeno fuzzy system is stable in the large. Next, the derived condition is recast in the formulation of LMI and numerically addressed. Finally, the applicability of the suggested methodology is highlighted via computer simulations.

  • PDF

Controller Design of Takagi-Sugeno Fuzzy Model-Based Multi-Agent Systems for State Consensus (타카기-수게노 퍼지모델 기반 다개체 시스템의 상태일치를 위한 제어기 설계)

  • Moon, Ji Hyun;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.133-138
    • /
    • 2013
  • This paper addresses a state consensus controller design technique of Takagi-Sugeno fuzzy model-based multi-agent systems in a continuous-time domain. We express the interconnection topology among the agents through graph theory. The design condition is represented in terms of linear matrix inequalities. Numerical example is provided to demonstrate the effectiveness of the proposed method.

Output Feedback Robust $H^infty$ Control for Uncertain Fuzzy Dynamic Systems (불확실성을 갖는 퍼지 시스템의 출력궤환 견실 $H^infty$ 제어)

  • Lee, Kap-Lai;Kim, Jong-Hae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.15-24
    • /
    • 2000
  • This paper presents an output feedback robust H$\infty$ control problem for a class of uncertain nonlinear systems, which can be represented by an fuzzy dynamic model. The nonlinear system is represented by Takagi-Sugeno fuzzy model, and the control design is carried out on the basis of the fuzzy model. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H$\infty$ controllers are given in terms of linear matrix inequalities(LMIs). Constructive algorithm for design of robust H$\infty$ controller is also developed. The resulting controller is nonlinear and automatically tuned based on fuzzy operation.

  • PDF

Robust Stability Analysis of Hybrid Magnetic Bearing System (하이브리드 자기베어링 시스템의 강인 안정도 해석)

  • Sung, Hwa-Chang;Park, Jin-Bae;Tark, Myung-Hwan;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.372-377
    • /
    • 2011
  • This paper propose the robust stability algorithm for controlling a hybrid magnetic bearing system. The control object in the magnetic bearing system enables the rotor to rotate without any physical contact by using magnetic force. Generally, the system dynamics of the magnetic bearing system has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving these problems, we propose the fuzzy modelling and robust control algorithm for hybrind magnetic bearing system. The sufficient conditions for robust controller are obtained in terms of solutions to linear matrix inequalities (LMIs). Simulation results for HMB are demonstrated to visualize the feasibility of the proposed method.

A Fuzzy H Filter Design for State of Charge Estimation (잔존충전용량 추정을 위한 퍼지 H 필터 설계)

  • Yoo, Seog-Hwan;Wu, Xuedong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.214-219
    • /
    • 2010
  • This paper deals with a nonlinear fuzzy $H_{\infty}$ filter design for SOC(state of charge) estimation in Lithium polymer battery. The dynamic equation of the battery cell is modeled as a T-S fuzzy system and the filter is designed via solutions of linear matrix inequalities. In order to illustrate the performance of the designed filter, a computer simulation is performed using the experimental data with the UDDS(urban dynamometer driving schedule) current profile.