• 제목/요약/키워드: 생성형 AI 챗봇 서비스

검색결과 10건 처리시간 0.025초

건국봇: 검색모델과 생성모델을 결합한 챗봇 (KU-Bot: Chatbot combining Retrieval-based model and Generative Model)

  • 이현우;민덕기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.449-452
    • /
    • 2018
  • 최근 AI 스피커를 비롯한 지능형 비서 서비스들이 빠르게 등장하고 있으며, AI 시장에서도 특히 챗봇 구축이 가장 활발하게 진행되고 있다. 건국봇은 건국대학교 학생들에게 필요한 정보를 제공하는 대화형 서비스이다. 본 논문에서는 대표적인 챗봇 구현 방법인 검색모델과 생성모델의 장단점을 분석하고, 건국봇에 적용한 사례를 소개한다. 궁극적으로, 질의문의 의도를 단어의 가중치를 고려해 추론함으로써 Unknown 추론을 강화하고 의도되지 않은 문장의 처리 관점에서 성능을 향상시키는 방법을 제안한다.

GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석 (Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics)

  • 권미선
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권3호
    • /
    • pp.467-484
    • /
    • 2024
  • 생성형 인공지능의 급속한 발전으로 이제 프로그래머의 도움 없이 누구나 개인 맞춤형 챗봇을 제작하고 이를 무료로 활용할 수 있는 시대가 열렸다. 본 연구는 예비 교사 교육을 목적으로, OpenAI의 GPTs 기반 맞춤형 챗봇을 개발하였다. 개발된 맞춤형 챗봇은 대규모 언어 모델(Large Language Model, LLM)을 토대로한 생성형 AI를 이용했기 때문에 그 응답 또한 확률적이므로, 맞춤형 챗봇의 개발 절차뿐만 아니라 그 응답이 적절한지에 대한 점검이 필요하다. 이를 위해 예비 교사를 지도하는 교수자들이 맞춤형 챗봇의 응답에 대한 타당성을 5점 척도로 분석하여 수학교육적 성능을 살펴보았다. 동일한 질문에 대한 범용적인 챗봇인 ChatGPT, 맞춤형 챗봇인 GPT, 그리고 초등수학교육 전문가의 응답을 교수자들이 분석한 결과, 초등수학교육 전문가의 응답은 평균 4.52점을, 맞춤형 챗봇인 GPT는 평균 3.73점을 받아 맞춤형 챗봇인 GPT의 응답은 초등수학교육 전문가의 수준에는 미치지 못하는 것으로 나타났다. 하지만 5점 척도에서 보통 이상으로 '적절하다'에 가까운 점수를 받아 맞춤형 챗봇인 GPT의 교육적 활용 가능성을 확인할 수 있었다. 한편, 범용적인 챗봇인 ChatGPT의 응답은 평균 2.86점으로 낮은 평가를 받았으며, 예비 교사를 지도하는 교수자들은 답변 내용이 체계적이지 않고 일반적인 수준에 머물러 있다고 평가하였다. 이에 범용적인 챗봇인 ChatGPT는 수학교육에 한정하여 사용하기에는 어려움이 있어 보인다. 기존의 맞춤형 챗봇이 교육적 효과를 입증했음에도 불구하고, 그 제작 과정에서 요구되는 시간과 비용이 큰 장애물로 작용해왔다. 그러나 이제 GPTs 서비스를 통해 누구나 손쉽게 교수자 및 학습자에게 적절한 맞춤형 챗봇을 제작할 수 있으며, 그 응답이 일정 수준 이상의 수학교육적 타당성을 보여 수학교육의 다양한 측면에서 효과적으로 활용할 수 있을 것이다.

챗봇을 활용한 영화정보 서비스 개발 (The development of cinema information service using chatbot)

  • 김유리
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.365-368
    • /
    • 2018
  • 인공지능 기술이 발달하면서 챗봇 플랫폼이 주목받고 있다. 챗봇이란 규칙 또는 인공지능(AI)을 이용해 사용자와 상호작용을 하는 대화형 인터페이스다. 챗봇에서 대화를 처리하는 방법은 규칙기반 대화 시스템, 검색기능 대화 시스템, 생성기반 대화 시스템이 있다. 본 논문에서는 규칙 기반 대화 시스템을 바탕으로 하는 모바일 영화 챗봇 서비스를 개발하였다. 이를 통하여 사용자는 더 편리하게 영화 관련 정보를 제공받을 수 있다.

모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석 (A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach)

  • 김소연;조지연;박상열;이봉규
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.109-119
    • /
    • 2024
  • 본 연구는 모바일 등 온디바이스(on-device)에 탑재된 생성형 AI 기반 서비스가 증가하는 환경 속에서 온디바이스 AI 관련 초기연구에 기여하고자 한다. 모바일 환경에서 생성형 AI 기반 챗봇 서비스의 성공 전략을 도출하기 위해 구글 플레이 스토어에서 수집한 20만 건 이상의 실제 사용자 경험 리뷰 데이터를 LDA 토픽모델링 기법을 사용하여 분석하였다. 정보시스템 성공 모델(ISSM)에 기반하여 도출된 주제를 해석한 결과 정보 품질에는 튜터링, 대답의 제한, 신뢰할 수 없는 정보와 같은 토픽이, 시스템 품질에는 멀티모달서비스, 대화의 품질, 디바이스 상호운용성의 토픽이, 서비스 품질에는 디바이스 간 호환성, 서비스의 사용 용이성, 유료 서비스의 품질, 계정 호환성의 토픽이, 마지막으로 순 효익에는 창의적 협업 토픽이 연결되었다. 생성형 AI의 의인화는 기존 모델로 설명되지 않는 새로운 경험 요인으로 나타났다. 본 연구는 사용자 측면에서의 구체적인 긍정 및 부정 경험 차원을 이론에 기반하여 설명함으로써 향후 관련 연구의 방향을 제시하고, 성공적인 비즈니스를 위한 개선점과 보완점을 찾아 기업에게 서비스의 성공적 운영을 위한 전략적 인사이트를 제공하고자 한다.

박물관 안내를 위한 시나리오 기반의 AI 음성 챗봇 시스템 구현 (Implementation of Scenario-based AI Voice Chatbot System for Museum Guidance)

  • 정선우;최은성;안선규;강영진;정석찬
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.91-102
    • /
    • 2022
  • 인공지능이 발전하면서 AI 챗봇 시스템의 활용이 활발히 이루어지고 있다. 그 예로 공공기관에서는 민원, 행정 분야에서 업무 보조, 전문지식 서비스 등으로 챗봇 활용 분야가 확대되고 있으며 민간기업은 대화형 고객 응대 서비스 등으로 챗봇을 활용하고 있다. 본 연구에서는 시나리오 기반의 AI 음성 챗봇 시스템을 제안하여 박물관의 운영 비용을 절감하고 관람객에게 양방향성 안내 서비스를 제공하고자 한다. 구현한 음성 챗봇 시스템은 실시간으로 특정 디렉터리를 감시하여 사용자의 음성을 감지하는 감시자 객체와 음성 파일이 생성되면 순차적으로 모델별 추론을 수행하여 AI의 응대 음성을 출력하는 이벤트 핸들러 객체로 구성되며, 스레드와 데크를 활용한 중복 방지 기능을 포함하여 단일 GPU 환경에서 추론 중에 GPU의 연산이 중복되지 않도록 한다.

QA Pair Passage RAG 기반 LLM 한국어 챗봇 서비스 (QA Pair Passage RAG-based LLM Korean chatbot service)

  • 신중민;이재욱;김경민;이태민;안성민;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.683-689
    • /
    • 2023
  • 자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안

  • PDF

LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교 (An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions)

  • 안예은;오정석
    • 서비스연구
    • /
    • 제13권4호
    • /
    • pp.191-205
    • /
    • 2023
  • 인공 지능 (AI), 특히 텍스트 생성 서비스 분야에서의 발전은 두드러지게 나타나고 있으며, AI-as-a-Service (AIaaS) 시장은 2028년까지 550억 달러에 달할 것으로 예상된다. 본 연구는 합성 텍스트 미디어 소프트웨어의 품질 요소를 탐구하였으며, 이를 위해 ChatGPT, Writesonic, Jasper, 그리고 Anyword와 같은 산업의 주요 서비스에 주목하였다. 소프트웨어 평가 플랫폼에서 수집된 4,000개 이상의 리뷰를 바탕으로, Gensim 라이브러리를 활용한 잠재 디리클레 할당 (LDA) 주제 모델링 기법을 적용하였다. 이 분석을 통해 11개의 주제가 도출되었다. 이후 이 주제들을 AICSQ 및 AISAQUAL과 같은 기존 논문에서 다루었던 AI 서비스 품질 차원과 비교 분석하였다. 리뷰에서는 가용성 및 효율성과 같은 차원이 주로 강조되었으며, 이전 연구에서 중요하게 여겨졌던 사람다움과 같은 요소는 본 연구에서 강조되지 않았다. 이러한 결과는 AI 서비스의 본질적 특성, 즉 사용자와의 직접적인 상호작용보다 의미론적 이해에 더 중점을 둔다는 특성 때문으로 해석된다. 본 연구는 단일 리뷰 원천 및 평가자들의 인구 통계의 특정성과 같은 잠재적 편향을 인정하며, 향후 연구 방향으로는 이러한 품질 차원이 사용자 만족도에 어떻게 영향을 미치는지, 그리고 개별 차원이 전체 평점에 어떻게 영향을 미치는지에 대한 깊은 분석을 제안한다.

A Study on Measuring the Risk of Re-identification of Personal Information in Conversational Text Data using AI

  • Dong-Hyun Kim;Ye-Seul Cho;Tae-Jong Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권10호
    • /
    • pp.77-87
    • /
    • 2024
  • 최근 인공지능 기술 발전으로 다양한 챗봇이 등장하여 호텔 예약, 뉴스 확인, 법률 상담 등 일상 작업을 효율적으로 수행하고 있다. 특히 ChatGPT와 같은 생성형 챗봇은 교육, 연구, 예술 분야에서 자체 콘텐츠를 생성하는 등 활용 가능성을 확장하고 있다. 이러한 AI챗봇의 학습에는 고객 서비스 대화 기록 등 방대한 양의 '대화형 텍스트 데이터'가 필요하지만, 정제되지 않은 대화형 텍스트 데이터의 학습으로 인해 국내외에서 AI챗봇에 대한 개인정보 침해 사례가 발생하고 있다. 본 연구는 AI챗봇 학습에 사용되는 '대화형 텍스트 데이터'를 기반으로 데이터 내 포함되어 있는 개인정보 항목에 대한 재식별 위험성을 계량적으로 측정할 수 있는 방법론을 제안하고 있다. 제안 방법론에 대한 타당성 검증을 위해 가상의 대화형 데이터를 생성하여 자체실증을 하였으며, 외부 전문가 220명을 대상으로 설문조사를 실시하여 제안하는 방법론의 유의미함을 확인할 수 있었다.

LLM 기반의 생성형 AI 응답 데이터 품질이 업무 활용 만족도에 미치는 영향에 관한 연구 (A Study of how LLM-based generative AI response data quality affects impact on job satisfaction)

  • 이승환;현지은;김광용
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.117-129
    • /
    • 2024
  • 2017년 새로운 형태의 아키텍처인 트랜스포머(Transformer)가 발표되면서 언어모델에도 많은 변화가 있었다. 특히 대형 언어 모델인 LLM(Large language model)의 발전으로 검색이나 챗봇(Chatbot)과 같은 생성형 AI 서비스가 다양한 업무 영역에 활용되고 있다. 하지만 개인정보 유출과 같은 보안 이슈나 거짓 정보를 생성하는 할루시네이션(Hallucination)과 같은 신뢰성 문제가 발생하면서 이러한 서비스의 실효성에 대한 우려의 목소리도 커지고 있다. 이에 본 연구에서는 이러한 우려에도 불구하고 생성형 AI를 업무 영역에 활용하고 있는 빈도가 점점 증가하고 있는 요인에 대해서 분석하고자 하였다. 이를 위해 LLM 기반의 생성형 AI 응답 데이터 품질에 영향을 미치는 8가지 요인을 도출하고 유효 표본 195개를 대상으로 이러한 요인들이 업무 활용 만족도에 미치는 영향을 실증 분석하였다. 분석결과 전문성, 접근성, 다양성, 편리성이 지속적 사용의도에 유의한 영향을, 보안성, 안정성, 신뢰성 등이 부분적으로 유의한 영향을, 완전성이 부정적 영향을 미치는 요인으로 나타났다. 본 연구에서는 응답 데이터 품질에 대한 수요자의 인식이 업무 활용 만족도에 어떠한 영향을 미치는지 학문적으로 규명하고, 이러한 서비스에 대한 수요자 중심의 의미 있는 실무적 시사점을 제시하는데 그 목적이 있다.

Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석 (Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit)

  • 나혜인;이병희
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.