• Title/Summary/Keyword: 생성형 AI 서비스

Search Result 67, Processing Time 0.023 seconds

A Study on Applying Generative AI to the Practice of Records Management from the Practitioner's Perspective (생성형 AI의 기록관리 현장 도입을 위한 실무자 관점의 고찰)

  • Kang, Yoona;Oh, Hyo-Jung
    • The Korean Journal of Archival Studies
    • /
    • no.82
    • /
    • pp.231-274
    • /
    • 2024
  • In recent years, generative AI has made remarkable advancements and is being actively utilized in various fields to enhance work efficiency. However, despite the shortage of human resources and funding due to the "one-person archive system" in many domestic records management institutions, these institutions have shown a passive attitude toward adopting and utilizing generative AI as a tool for supporting their tasks. Therefore, the records management field should actively consider the adoption of generative AI to respond to technological changes and move towards more intelligent work processes. In particular, there is a need to derive practical and effective application strategies that incorporate the perspectives of field practitioners. This study aims to gather and analyze the opinions of records management professionals on applying generative AI to various records management tasks, proposing feasible application strategies. To this end, a survey and focus group interviews (FGI) were conducted with experienced records management professionals. The survey was conducted to collect detailed feedback on the expected benefits, usage frequency, and willingness to develop generative AI applications. Meanwhile, the FGIs aimed to refine and improve the proposed generative AI strategies, adding new features and adjustments to better align them with practical applications in the field. This study is significant in that it assesses the practical applicability of generative AI technologies in records management and proposes detailed improvement plans and application strategies, thus providing foundational data to improve work efficiency, accuracy, and satisfaction in records information services.

A suggestion of in-depth interview guidelines using generative AI services for lean startups (린 스타트업을 위한 생성형 AI 서비스 활용 심층 인터뷰 가이드라인 제안)

  • Lee Soobin;Jung Young-Wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.471-485
    • /
    • 2024
  • This study explores the effective utilization of generative AI for conducting in-depth interviews within the lean startup environment. With recent technological advancements, the application of generative AI in enhancing operational productivity has been on the rise across various organizations, and this trend extends to the lean startup milieu. The research develops specific guidelines and a guidebook aimed at assisting practitioners in lean startups to conduct in-depth interviews using AI, even amidst the constraints of limited time and capital. The proposed guidebook facilitates practitioners to swiftly design and conduct interviews, thereby promoting an agile and flexible working environment within lean startups. Moreover, this study investigates practical methods for applying text-based generative AI services like ChatGPT 4 and Luyten in the fields of design and interviewing, thereby contributing to the academic discussion and practical implementation in these areas. The significance of this research lies in its potential to broaden the horizon of scholarly debate and practical application of generative AI in lean startups.

Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework (LLM 애플리케이션 아키텍처를 활용한 생성형 AI 서비스 구현: RAG모델과 LangChain 프레임워크 기반)

  • Cheonsu Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.129-164
    • /
    • 2023
  • In a situation where the use and introduction of Large Language Models (LLMs) is expanding due to recent developments in generative AI technology, it is difficult to find actual application cases or implementation methods for the use of internal company data in existing studies. Accordingly, this study presents a method of implementing generative AI services using the LLM application architecture using the most widely used LangChain framework. To this end, we reviewed various ways to overcome the problem of lack of information, focusing on the use of LLM, and presented specific solutions. To this end, we analyze methods of fine-tuning or direct use of document information and look in detail at the main steps of information storage and retrieval methods using the retrieval augmented generation (RAG) model to solve these problems. In particular, similar context recommendation and Question-Answering (QA) systems were utilized as a method to store and search information in a vector store using the RAG model. In addition, the specific operation method, major implementation steps and cases, including implementation source and user interface were presented to enhance understanding of generative AI technology. This has meaning and value in enabling LLM to be actively utilized in implementing services within companies.

Analysis of perceptions and needs of generative AI for work-related use in elementary and secondary education

  • Hye Jin Yun;Kwihoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.231-243
    • /
    • 2024
  • As generative artificial intelligence (AI) services become more diversified and widely used, attempts and discussions on their application in education have become active. The purpose of this study is to investigate and analyze general and work-related perceptions, utilization, and needs regarding generative AI in elementary and secondary education. A survey was conducted among teachers and staff in Chungcheongbuk-do, and 934 responses were analyzed. The main research results are as follows: First, their work-related use of generative AI was lower than their general use, and considering the periodic frequency of more than once a month, the rate was much lower. Second, the main expectation when using generative AI in work appears to be improved work efficiency. Third, regarding the use of generative AI for each task, differences in perception of its usefulness were noticeable depending on position and occupation. They generally responded positively to the usefulness of generative AI in processing documents. To facilitate the use of generative AI for work by elementary and secondary teachers and staff, it is necessary to create an environment that promotes its use while ensuring safety against potential side effects. Additionally, requirements and needs should be considered depending on the position and occupation.

Development of university liberal arts curriculum for understanding and utilizing generative AI (생성형 AI 이해 및 활용을 위한 대학 교양교과목 교육과정 개발)

  • Jihyun Park;Jongjin Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.645-650
    • /
    • 2024
  • This paper jointly designed and developed a liberal arts curriculum at two local universities for college liberal arts education using generative AI centered on ChatGPT. The developed curriculum takes into account the conceptual components for designing classes for integrated use of university ChatGPT presented in existing research, understands the language model and artificial intelligence that form the basis of ChatGPT, and applies generative AI including ChatGPT to various domains. It was developed with useful content. The developed curriculum introduces the concept and changing aspects of artificial intelligence and the natural language processing language model that is the basis of ChatGPT for students in various majors, and generates ChatGPT, a generative AI and large language model (LLM), and various open sources. The purpose was to implement my own AI service using the model and present an example of mutual collaboration between universities in Joint Education Curriculum Operation.

An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions (LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교)

  • YaeEun Ahn;Jungsuk Oh
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.191-205
    • /
    • 2023
  • Artificial Intelligence (AI), especially in the domain of text-generative services, has witnessed a significant surge, with forecasts indicating the AI-as-a-Service (AIaaS) market reaching a valuation of $55.0 Billion by 2028. This research set out to explore the quality dimensions characterizing synthetic text media software, with a focus on four key players in the industry: ChatGPT, Writesonic, Jasper, and Anyword. Drawing from a comprehensive dataset of over 4,000 reviews sourced from a software evaluation platform, the study employed the Latent Dirichlet Allocation (LDA) topic modeling technique using the Gensim library. This process resulted the data into 11 distinct topics. Subsequent analysis involved comparing these topics against established AI service quality dimensions, specifically AICSQ and AISAQUAL. Notably, the reviews predominantly emphasized dimensions like availability and efficiency, while others, such as anthropomorphism, which have been underscored in prior literature, were absent. This observation is attributed to the inherent nature of the reviews of AI services examined, which lean more towards semantic understanding rather than direct user interaction. The study acknowledges inherent limitations, mainly potential biases stemming from the singular review source and the specific nature of the reviewer demographic. Possible future research includes gauging the real-world implications of these quality dimensions on user satisfaction and to discuss deeper into how individual dimensions might impact overall ratings.

Creating Sky Images according to Weather Conditions Using GAN (GAN을 활용한 기상조건에 따른 하늘 이미지 생성)

  • Cho Kyu Cheol;Jo Kang Hyeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.293-296
    • /
    • 2024
  • 현재 생성형 AI가 활발히 연구되고 있는 가운데, 대부분의 이미지 생성 AI는 프롬프트를 기반으로 한 Text-To-Image 방식을 주로 사용하고 있다. 하지만, 프롬프트 기반의 생성 AI는 실제 서비스에 도입하기 어려운 점이 많다. 여러 이미지 중, 하늘 이미지는 메타버스 등 가상 공간에서 매우 자주 사용되는 이미지 중 하나이면서 여러 입력값에 의해 이미지가 달라진다. 이 논문에서는 GAN을 활용해 기상 조건에 적합한 하늘 이미지를 생성하는 프로그램을 설계 및 구현한다.

  • PDF

A Study on User Continuance Intention of Conversational Generative AI Services: Focused on Task-Technology Fit (TTF) and Trust (대화형 생성AI 서비스 사용자의 지속사용의도에 관한 연구: 과업-기술적합(TTF)과 신뢰를 중심으로)

  • Seunggyu Ann;Hyunchul Ahn
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.193-218
    • /
    • 2024
  • This study identified factors related to the technological characteristics of conversational generative AI services and the user's task characteristics. Then, it analyzed the effects of task-technology fit on user satisfaction and continued use. The effects of trust, which represents the degree of users' belief in the information provided by generative AI, on task-technology fit, user satisfaction, and user continuance intention were also examined. A survey was conducted among users of various age groups, and 198 questionnaires were collected and analyzed using SmartPLS 4.0 to validate the proposed model. As a result of hypothesis testing, it was confirmed that language fluency and interactivity among technology characteristics and ambiguity among task characteristics significantly affect user satisfaction and intention to continue using via task-technology fit. However, creativity among skill characteristics and time flexibility among task characteristics did not significantly affect task-technology fit, and trust did not directly affect task-technology fit and intention to continue using, but only positively affected user satisfaction. The results of this study can provide meaningful implications for vendors who want to develop and provide conversational generative AI services or companies who want to adopt generative AI technology to improve business productivity.

KU-Bot: Chatbot combining Retrieval-based model and Generative Model (건국봇: 검색모델과 생성모델을 결합한 챗봇)

  • Lee, Hyunwoo;Min, Dugki
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • 최근 AI 스피커를 비롯한 지능형 비서 서비스들이 빠르게 등장하고 있으며, AI 시장에서도 특히 챗봇 구축이 가장 활발하게 진행되고 있다. 건국봇은 건국대학교 학생들에게 필요한 정보를 제공하는 대화형 서비스이다. 본 논문에서는 대표적인 챗봇 구현 방법인 검색모델과 생성모델의 장단점을 분석하고, 건국봇에 적용한 사례를 소개한다. 궁극적으로, 질의문의 의도를 단어의 가중치를 고려해 추론함으로써 Unknown 추론을 강화하고 의도되지 않은 문장의 처리 관점에서 성능을 향상시키는 방법을 제안한다.

A Study of how LLM-based generative AI response data quality affects impact on job satisfaction (LLM 기반의 생성형 AI 응답 데이터 품질이 업무 활용 만족도에 미치는 영향에 관한 연구)

  • Lee Seung Hwan;Hyun Ji Eun;Gim Gwang Yong
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.117-129
    • /
    • 2024
  • With the announcement of Transformer, a new type of architecture, in 2017, there have been many changes in language models. In particular, the development of LLM (Large language model) has enabled generative AI services such as search and chatbot to be utilized in various business areas. However, security issues such as personal information leakage and reliability issues such as hallucination, which generates false information, have raised concerns about the effectiveness of these services. In this study, we aimed to analyze the factors that are increasing the frequency of using generative AI in the workplace despite these concerns. To this end, we derived eight factors that affect the quality of LLM-based generative AI response data and empirically analyzed the impact of these factors on job satisfaction using a valid sample of 195 respondents. The results showed that expertise, accessibility, diversity, and convenience had a significant impact on intention to continue using, security, stability, and reliability had a partially significant impact, and completeness had a negative impact. The purpose of this study is to academically investigate how customer perception of response data quality affects business utilization satisfaction and to provide meaningful practical implications for customer-centered services.