본 연구에서는 훨씬 간단하고 직교 다항식이 아니더라도 단지 기하학적 경계 조건만을 만족하는 단순 급수함수(simplified series function)와 Rayleigh-Ritz met- hod를 이용하여 동방성 및 복합재료 직각삼각형에 대하여 수렴성을 검토하고, 경계조 건의 변화와 직교이방성 재료의 물성치 E$_{1}$, E$_{2}$, G, .nu.$_{12}$의 변화와 기 하학적 형상비 .alpha.=b/a의 변화가 무차원 고유진동수에 대해 얼마나 영향을 미치는지를 조사하고, 각 mode 별 nodal patterns과 mode shapes의 변화를 시각적으로 제시하여 보이므로써, 유사한 문제를 단순화시켜 효율적으로 해석 할수 있음을 보이고자 한다. 따라서 본 연구에서는 두개의 직각좌표가 경계에서 동시에 변하는 가장 간단하면서도 대표적인 직각 삼각형에 대해서 논하고, 앞으로 모든 임의의 형상에 대해서도 확장할 수 있는 가능성을 제시하고자 한다.다.
This paper is concerned with the convergence of double trigonometric series and Fourier series. Since the beginning of the 20th century, many authors have studied on those series. Also, Ferenc $M{\acute{o}}ricz$ has studied the convergence of double trigonometric series and double Fourier series so far. We consider $L^p(T^2)$-convergence results focused on the Ferenc $M{\acute{o}}ricz^{\prime}s$ studies from the second half of the 20th century up to now. In section 2, we reintroduce some of Ferenc $M{\acute{o}}ricz^{\prime}s$ remarkable theorems. Also we investigate his several important results. In conclusion, we investigate his research trends and the simple minor genealogy from J. B. Joseph Fourier to Ferenc $M{\acute{o}}ricz$. In addition, we present the research minor lineage of his study on $L^p(T^2)$-convergence.
The $L^1$-convergence of Fourier series problems through additional assumptions for Fourier coefficients were presented by W. H. Young in 1913. We say that they are the classical results. Using modified trigonometric series is the convenience method to study the $L^1$-convergence of Fourier series problems. they are called the neoclassical results. This study concerns with the $L^1$-convergence of Fourier series. We introduce the classical and neoclassical results of $L^1$-convergence sequentially. In particular, we investigate $L^1$-convergence results focused on the results of Bhatia's studies. In conclusion, we present the research minor lineage of Bhatia's studies and compare the classes of $L^1$-convergence mutually.
19세기에 푸리에와 디리클레가 한 개의 식으로 표현되지 않을 수도 있는 "임의의" 함수를 삼각급수로 표현하는 것과 관련하여 연속함수의 적분을 다루었던 코시의 적분보다 더 일반적인 적분의 필요성을 제기하여 리만적분론으로 이끌었다. 한동안 리만적분이 가장 일반적인 적분으로 간주되었고, 이 적분론이 집중적으로 다루어진 결과 리만적분의 약점들이 보였으나, 적어도 초기에는 이것들이 리만적분에 대한 비판으로 보이지 않았다. 그러나 죠르단이 1892년에 용량개념을 소개하며 리만적분론을 측도론적 배경에서 다루었고, 이로부터 몇 년 후에 보렐이 죠르단의 용량론을 측도론으로 발전시킨 후에 르베그가 이 둘의 이론을 합쳐서 지금 "르베그적분"으로 알고 있는 적분의 새 개념을 얻게 되었다.
유한요소법을 이용하여 전자장을 해석할 경우 전류원이 전 영역에 비해 극히 작은 영역이면, 요소분할 과정에서 소스부분을 세분하여야 하므로 결국 미지수의 증가를 가져오게 된다. 또한, 선전류 문제의 경우 2차원 유한 요소 해석이 용이하지 않다. 이를 보안하기 위해 본 논문에서는 소스가 선전류이고 관심 영역이 선전류원으로부터 떨어져 있는 경우, 소스 영역은 해석해를 적용하여 유한요소법과 결합하는 방법을 제시하였다. 해석적인 해는 원통좌표계에서 반정에 대한 멱함수와 회전각도에 대한 삼각함수의 곱의 형태로 표현된다. 이때 두 종류의 적분 상수가 있는데, 이는 경계상의 포텐셜값과 유한요소법의 경계 적분항을 푸리에급수로 전개한 계수로 표현된다. 제안한 알고리즘의 검증을 위하여 해석해가 존재하는 모델을 설정하여 해석적인 방법, 기존의 유한요소 법 및 결합 방법에 의한 해를 비교 검증하였다.
본 연구는 삼각함수 각의 크기를 표현하기 위해 라디안 단위를 새로 도입하는 이유로서 호의 길이를 이용한 각의 측도라는 호도법의 의미와, 삼각함수의 정의역이 일반각을 나타내는 실수로 확장된 이유를 재조명하고자 한다. 이를 위해 라디안 개념의 다각적인 교수학적 분석을 하고자, 역사적, 수학적, 응용수학적 분석을 수행하였다. 이를 통해 첫째, 호도법은 각도에 내재된 본질이고, 라디안은 원주율(${\pi}$)과 밀접한 이론적이고 절대적인 단위이며, 삼각함수를 실함수로 함을 밝혔다. 둘째, 라디안은 동심원에서 비와 비례 관계의 공변성을 거쳐 불변성을 인식하도록 할 것, 라디안으로 표현한 코사인과 사인의 직교성이 임의의 함수의 급수 표현을 가능하게 함, 라디안은 호의 길이를 반지름으로 측도하는 가장 단순화한 표준임을 인식하도록 할 것, 분할 전략을 통해 육십분법과의 연결성을 찾을 수 있음을 밝혔다. 셋째, 각과 각도의 구별로, 라디안 단위의 생략 여부에 대한 정당화와, 호와 반지름 사이의 곱셈 관계 전략이 필요함을 밝혔다. 이로써 도출한 교수학적 시사점은 라디안 개념의 유용성과 가치를 드러내고, 호도법의 실질적인 지도에 기여할 수 있다.
본 논문은 출력 전압의 선형성을 확장하기위한 정적 과변조 기법에 대한 것이다. 제안하는 방식은 기본파 전압 크기 지령에 해당하는 변조 지수로부터 직접 과변조 영역에서의 순시치 전압 크기를 얻어내는 방식을 취하며, 전압 위상 지령의 형태도 간소화시킨 간단한 정적 과변조 기법이다. 제안된 기법은 지령치 전압 크기 계산시 삼각함수의 연산이 불필요하다. 순시치 전압 크기와 유지각은 출력전압의 크기가 변조 지수에 해당하는 지령치 전압의 기본파 크기와 동일하도록 푸리에 급수 전개를 통하여 미리 계산된 근사식을 이용한다.
도파로의 전자기장을 Bessel함수와 삼각함수로 급수전개하고 코어와 클래드간의 경계면에서 유한한 갯수의 점들을 선택하여 각 점에 전자기장의 경계조건을 적용함으로서 반원형 단면을 갖는 광도파로의 벡터해를 구하였다. 그리고 각 고유모우드들의 전파상수와 에너지 분포를 구하여 그 특성을 토의하였다. -H가 E로 바꾸어지는 것을 제외하고는 odd인 모우드와 거의 같았으며, 코어와 클래드의 굴절률 비가 1로 접근함에 따라서 even과 odd 모우드는 서로 축최됨을 볼 수 있었다.
이 연구는 이방성 평판의 휨 해석을 위한 지배방정식을 유도하고 다양한 경계조건을 갖는 평판의 정확한 풀이과정을 제시하였다. 이 해법은 삼각급수를 이용하여 미분 방정식을 대수학적 방정식으로 변환시키는 전통적인 Navier와 Levy의 방법을 따랐다. Levy의 방법을 이용해 해를 구하려면 평판의 마주보는 두 끝단이 단순지지단인 경우에만 가능하다. Navier의 방법은 사각평판의 네 끝단이 모두 단순지지단 이어야 한다. 본 연구는 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였다. 이 해법은 평판 네 끝단의 경계조건이 단순지지단과 고정단의 어떤 조합이라도 적용될 수 있다. 하중조건도 분포하중, 부분하중 그리고 선하중에 대해 적용할 수 있다. 이 해법의 장점은 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였을 뿐만 아니라 정확한 해를 구할 수 있다. 비대칭 경계조건을 갖는 이방성평판에 대하여 이 해법을 이용한 계산결과를 나타냈다. 또한 Navier해법과 Levy해법 그리고 Szilard의 계산결과와 비교를 보여주었는데 계산된 처짐량이 잘 일치한다.
복합재료 적층판의 보다 정확한 해석결과를 얻기 위해서는 종방향 전단변형, 종방향 수직 변형률/응력에 의한 효과와 두께방향좌표에 관한 면내변위의 비선형 변화등이 고려되어야 한다. 본 연구에서는 3차원 고차이론을 이용하여 복합적층판의 좌굴하중 및 고유진동수를 구하였다. 단순지지된 적층판과 샌드위치의 해는 이중삼각함수형태의 Fourier 급수로 변환한 Navier 해법을 사용하였고, 일차전단변형, 고차전단변형이론에 의한 결과와 비교 분석하였다. 본 연구는 매개변수 즉, 보강각도, 적층수와 배열조건, 폭-두께비, 형상비의 변화에 따른 수치 해석 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.