• Title/Summary/Keyword: 블록암호 알고리즘

Search Result 300, Processing Time 0.022 seconds

Investigation of Masking Based Side Channel Countermeasures for LEA (LEA에 대한 마스킹 기반 부채널분석 대응기법에 관한 분석)

  • Kim, ChangKyun;Park, JaeHoon;Han, Daewan;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1431-1441
    • /
    • 2016
  • In case of ARX based block cipher algorithms with masking countermeasures, there is a need for a method to convert between Boolean masking and arithmetic masking. However, to apply masking countermeasures to ARX based algorithms is less efficient compared to masked AES with single masking method because converting between Boolean and arithmetic masking has high computation time. This paper shows performance results on 32-bit platform implementations of LEA with various masking conversion countermeasures against first order side channel attacks. In the implementation point of view, this paper presents computation time comparison between actual measurement value and theoretical one. This paper also confirms that the masked implementations of LEA are secure against first order side channel attacks by using a T-test.

Design of Crypto-processor for Internet-of-Things Applications (사물인터넷 응용을 위한 암호화 프로세서의 설계)

  • Ahn, Jae-uk;Choi, Jae-Hyuk;Ha, Ji-Ung;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.207-213
    • /
    • 2019
  • Recently, the importance for internet of things (IoT) security has increased enormously and hardware-based compact chips are needed in IoT communication industries. In this paper, we propose low-complexity crypto-processor that unifies advanced encryption standard (AES), academy, research, institute, agency (ARIA), and CLEFIA protocols into one combined design. In the proposed crypto-processor, encryption and decryption processes are shared, and 128-bit round key generation process is combined. Moreover, the shared design has been minimized to be adapted in generic IoT devices and systems including lightweight IoT devices. The proposed crypto-processor was implemented in Verilog hardware description language (HDL) and synthesized to gate level circuit in 65nm CMOS process, which results in 11,080 gate counts. This demonstrates roughly 42% better than the aggregates of three algorithm implementations in the aspect of gate counts.

A Design and Analysis of the Block Cipher Circle-g Using the Modified Feistel Structure (변형된 Feistel 구조를 이용한 Circle-g의 설계와 분석)

  • 임웅택;전문석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.3
    • /
    • pp.405-414
    • /
    • 2004
  • In this paper, we designed a 128-bits block cipher, Circle-g, which has 18-rounds modified Feistel structure and analyzed its secureness by the differential cryptanalysis and linear cryptanalysis. We could have full diffusion effect from the two rounds of the Circle-g. Because of the strong diffusion effect of the F-function of the algorithm, we could get a 9-rounds DC characteristic with probability 2^{-144} and a 12-rounds LC characteristic with probability 2^{-144}. For the Circle-g with 128-bit key, there is no shortcut attack, which is more efficient than the exhaustive key search, for more than 12 rounds of the algorithm.

  • PDF

An Implementation of 128bit Block Cipher Algorithm for Electronic Commerce (전자상거래를 위한 128비트 블록 암호 알고리즘의 구현)

  • 서장원;전문석
    • The Journal of Society for e-Business Studies
    • /
    • v.5 no.1
    • /
    • pp.55-73
    • /
    • 2000
  • Recently; EC(Electronic Commerce) is increasing with high speed based on the expansion of Internet. EC which is done on the cyber space through Internet has strong point like independence from time and space. On the contrary, it also has weak point like security problem because anybody can access easily to the system due to open network attribute of Internet. Therefore, we need the solutions that protect the security problem for safe and useful EC activity. One of these solutions is the implementation of strong cipher algorithm. NC(Nonpolynomial Complete) cipher algorithm proposed in this paper is good for the security and it overcome the limit of current 64bits cipher algorithm using 128bits key length for input, output and encryption key, Moreover, it is designed for the increase of calculation complexity and probability calculation by adapting more complex design for subkey generation regarded as one of important element effected to encryption. The result of simulation by the comparison with other cipher algorithm for capacity evaluation of proposed NC cipher algorithm is that the speed of encryption and decryption is 7.63 Mbps per block and the speed of subkey generation is 2,42 μ sec per block. So, prosed NC cipher algorithm is regarded as proper level for encryption. Furthermore, speed of subkey generation shows that NC cipher algorithm has the probability used to MAC(Message Authentication Code) and block implementation of Hash function.

  • PDF

On the Security of Rijndael-like Structures against Differential and Linear Cryptanalysis (Rijndael 유사 구조의 차분 공격과 선형 공격에 대한 안전성에 관한 연구)

  • 박상우;성수학;지성택;윤이중;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.3-14
    • /
    • 2002
  • Rijndael-like structure is the special case of SPN structure. The linear transformation of Rijndael-like structure consisits of linear transformations of two types, the one is byte permutation $\pi$ and the other is linear tranformation $\theta$= ($\theta_1, \theta_2, \theta_3, \theta_4$), where each of $\theta_i$ separately operates on each of the four rows of a state. The block cipher, Rijndael is an example of Rijndael-like structures. In this paper. we present a new method for upper bounding the maximum differential probability and the maximum linear hull probability for Rijndael-like structures.

A Study on the Prediction of Number of Bitcoin Network Transactions Based on Machine Learning (기계학습 기반 비트코인 네트워크 트랜잭션 수 예측에 관한 연구)

  • Ji, Se-Hyun;Baek, Ui-Jun;Shin, Mu-Gon;Park, Jun-Sang;Kim, Myung-Sup
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2019
  • Bitcoin, based on the blockchain technology is an online crypto-currency developed by Satoshi Nagamoto. Bitcoin, which was first issued on January 3, 2009, is rapidly evolving with increasing number of transactions. However, untoward incidents are occurring due to an increase in the number of Bitcoin transactions. Predicting the number of Bitcoin transactions is important to prepare for any issues that can occur in the Bitcoin network. This paper proposes to design model for predicting the number of Bitcoin transactions by applying two machine learning algorithms and then a model for predicting the number of Bitcoin transactions through experiments.

Application to 2-D Page-oriented Data Optical Cryptography Based on CFB Mode (CFB 모드에 기반한 2 차원 페이지 데이터의 광학적 암호화 응용)

  • Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.424-430
    • /
    • 2015
  • This paper proposes an optical cryptography application to 2-D page-oriented data based on CFB(Cipher Feedback) mode algorithm. The proposed method uses a free-space optical interconnected dual-encoding technique which performs XOR logic operations in order to implement 2-D page-oriented data encryption. The proposed method provides more enhanced cryptosystem with greater security strength than the conventional CFB block mode with 1-D encryption key due to the huge encryption key with 2-D arrayed page type. To verify the proposed method, encryption and decryption of 2-D page data and error analysis are carried out by computer simulations. The results show that the proposed CFB optical encryption system makes it possible to implement stronger cryptosystem with massive data processing and long encryption key compared to 1-D block method.

A Model for Self-Authentication Based on Decentralized Identifier (탈중앙화 신원증명에 기반한 본인 인증 모델)

  • Kim, Ho-Yoon;Han, Kun-Hee;Shin, Seung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.66-74
    • /
    • 2021
  • With the development of the Internet, user authentication technology that proves me online is improving. Existing ID methods pose a threat of personal information leakage if the service provider manages personal information and security is weak, and the information subject is to the service provider. In this study, as online identification technology develops, we propose a DID-based self-authentication model to prevent the threat of leakage of personal information from a centralized format and strengthen sovereignty. The proposed model allows users to directly manage personal information and strengthen their sovereignty over information topics through VC issued by the issuing agency. As a research method, a self-authentication model that guarantees security and integrity is presented using a decentralized identifier method based on distributed ledger technology, and the security of the attack method is analyzed. Because it authenticates through DID Auth using public key encryption algorithms, it is safe from sniffing, man in the middle attack, and the proposed model can replace real identity card.

Low-cost AES Implementation for RFID tags (RFID 태그를 위한 초소형 AES 연산기의 구현)

  • Koo, Bon-Seok;Ryu, Gwon-Ho;Yang, Sang-Woon;Chang, Tae-Joo;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.5
    • /
    • pp.67-77
    • /
    • 2006
  • Radio Frequency IDentification (RFID) will soon become an important technology in various industries. Therefore, security mechanisms for Rm systems are emerging crucial problems in RFID systems. In order to guarantee privacy and security, it is desirable to encrypt the transferred data with a strong crypto algorithm. In this paper, we present the ultra-light weight Advanced Encryption Standard (AES) processor which is suitable for RFID tags. The AES processor requires only 3,992 logic gates and is capable of both 128-bit encryption and decryption. The processor takes 446 clock cycles for encryption of a 128-bit data and 607 clock cycles for decryption. Therefore, it shows 55% improved result in encryption and 40% in decryption from previous cases.

A New Type of Differential Fault Analysis on DES Algorithm (DES 알고리즘에 대한 새로운 차분오류주입공격 방법)

  • So, Hyun-Dong;Kim, Sung-Kyoung;Hong, Seok-Hie;Kang, Eun-Sook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.3-13
    • /
    • 2010
  • Differential Fault Analysis (DFA) is widely known for one of the most efficient method analyzing block cipher. In this paper, we propose a new type of DFA on DES (Data Encryption Standard). DFA on DES was first introduced by Biham and Shamir, then Rivain recently introduced DFA on DES middle rounds (9-12 round). However previous attacks on DES can only be applied to the encryption process. Meanwhile, we first propose the DFA on DES key-schedule. In this paper, we proposed a more efficient DFA on DES key schedule with random fault. The proposed DFA method retrieves the key using a more practical fault model and requires fewer faults than the previous DFA on DES.