• Title/Summary/Keyword: 변동성 구조

Search Result 934, Processing Time 0.038 seconds

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

Evaluation on Flexural Performance for Light-Weight Composite Floor with Sound Reduction System (층간소음 대응형 경량합성바닥판에 대한 휨성능 평가)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung;Heo, Byung Wook;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • The purpose of this study is to propose structural technologies on the light-weight composite floor systems in the unit modular and to evaluate structural performance of the composite floor through flexural experiments. The flexural experiments were carried out on total nine specimens(each three type in shape) using steel flat deck and truss deck. From the results of test, all specimens showed the same failure patterns which exhibited deflection at the center of the specimens due to flexural deformation before concrete crushing at the upper of specimens. Also, we know that the proposed floors satisfied in serviceability and would be safe sufficiently. The ratio of experimental yield load by theoretical nominal load was the distribution of 0.86 to 1.27 with an average 1.04. Coefficient of variation in distribution showed good agreement.

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack (긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동)

  • Won, Deok Hee;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.401-410
    • /
    • 2017
  • This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

Piezoelectric property variation with respect to the frit addition for lower temperature sintering in PNW-PMN-PZT ceramic system (PNW-PMN-PZT 압전 세라믹의 저온소결을 위한 프리트 첨가 압전 특성평가)

  • Ryu, Sung-Lim;Kwon, Soon-Yong;Woo, Duck-Hyun;An, Sang-Gi;Jeong, Ji-Hyun;Um, Ju-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.191-191
    • /
    • 2008
  • 강유전성 세라믹스 재료로써는 PZT계열의 세라믹재료가 널리 쓰이고 있다. 이는 우수한 유전 및 압전특성을 가지고 있으나, PbO을 다량 함유하고 있어 $1000^{\circ}C$이상에서 PbO가 급격하게 휘발되는 성질 때문에 조성의 변동이 생겨 재현성이 어려우며 이를 방지하기 위하여 PbO를 과잉 첨가시키기 때문에 PbO휘발로 인한 강한 독성이 인체에 유해하고, 비환경 친화적인 물질로 최근에는 환경문제가 대두됨에 따라 대체 또는 보완 할 수 있는 방안에 검토되고 있다. 본 연구는 그 해결책의 한 방안으로 압전특성이 우수한 $(Pb_{0.94}Sr_{0.06})[(Ni_{1/2}W_{1/2})_{0.02}(Mn_{1/3}Nb_{2/3})_{0.07}(Zr_{0.51}Ti_{0.49})_{0.91}]O_3$계 조성을 설계하고 Glass frit(0~1.1 wt%)를 소량 첨가하여 액상 소결 특성을 부여하고 $1000^{\circ}C$ 이하의 저온에서 소결하여 유전 및 압전 특성을 평가하였다. 실험방법은 일반적인 세라믹스 제조공정으로 24시간 ball milling하고 $850^{\circ}C$에서 2시간 하소 후 Glass frit를 소결조제로 소랑 첨가하여 $1000^{\circ}C$ 이하 온도에서 소결을 진행하여 각 소결온도에 따른 유전 및 압전 특성을 평가하였다. 최종 소결된 시편의 밀도와 수축율을 분석하여 최적의 소결온도를 확립하였으며 XRD분석을 통해 perovskite구조를 확인하고 미세구조확인을 위해 SEM으로 관찰하였다. 압전 특성을 평가하였다.

  • PDF

New Social Risks and Social Welfare for Gender in Blind Spot (새로운 사회적 위험과 사각지대의 여성복지)

  • Seo, Dong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.320-328
    • /
    • 2009
  • New social risks is likely to emerge from instability of family structure, flexible of labor market, movement of globalization which is related with the post-industrial society and so on. Especially, a lot of women are exposure to not only old social risks but also new social risks. A breakdown of traditional family structure, flexible of labor market which is be followed by globalization, women's poverty and limited approaches at social security services are the representation risk which is confront to women. In this study, therefore, the social risk is recognized by breakdown of traditional family structure risk which comes from the social change, aging of population, the decrease of labor population and New Right ideology. The purpose of the study is to arrange the new welfare state at gender equality level by anglicizing about women's new social risks.

Lightweight Crane Design by Using Topology and Shape Optimization (위상최적설계와 형상최적설계를 이용한 크레인의 경량설계)

  • Kim, Young-Chul;Hong, Jung-Kie;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.821-826
    • /
    • 2011
  • CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.

Adjustment of Creep Coefficient Using Sensitivity Analysis (민감도 해석을 통한 크리프 계수 오차 보정)

  • Park, Jong-Bum;Park, Bong-Sik;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.293-296
    • /
    • 2008
  • Creep and shrinkage in concrete structures are very complex phenomena in which various uncertainties exist with regard to inherent material variations as well as modeling uncertainties. The creep and shrinkage models which are capable of predicting long-term structural response are specified in design codes such as ACI 209-92, CEB-FIP Model Code 90, etc. However, in the prediction formulas of creep and shrinkage effects of concrete, various kinds of parameters are involved to express the characteristics of concrete under consideration (i.e. the proportion of concrete, the shape of the structure, relative humidity, etc.). And the predicted values from each design code under same environment differ from each other. To predict the characteristics of concrete, the long-term experiments of creep and shrinkage is necessary but this is not suitable for a construction field. In this study, adjustment method of creep coefficient using sensitivity analysis is proposed to predict creep coefficient of concrete exactly and it is checked up on the validity of the predicting method by comparing to the assumed value and predicted one.

  • PDF

Wave Field Analysis around Permeable Rubble-Mound Breakwaters (투과 사석방파제 주변의 파랑장 해석)

  • 곽문수;이기상;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.116-126
    • /
    • 2003
  • In this study, a method that leads to make a simple decision on important parameters in analysis of wave field in permeable rubble-mound, block-mound breakwater, such as penetration velocity of incident waves and resistance coefficient, is introduced. A model that could analyze wave field of permeable breakwater in harbor, by applying these methods and arbitrary transmission coefficient boundary condition to a time-dependent mild-slope equation, was introduced. The verification of the model was done by carrying out 2-D physical model test on permeable breakwater, measuring the change in water surface elevation, comparing the computation result with time series, and comparing the result gained from the 3-D physical model test on permeable block-mound breakwater in an field harbor with the computation result in terms of regional wave height ratio in a harbor.

A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge (국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례)

  • Park, Si-Hyun;Jung, Woo-Young;Kim, Hyun-Woo;You, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Suspension bridge cables made of high strength steel wires require periodical maintenance in accordance with the axial force of cable-band bolts, since the bolts in suspension bridges can undergo tension decrease due to creep of cable wires, bolt relaxation, load fluctuation, and cable re-arrangement, etc. Consequently, this study is aimed at investigating and subsequently evaluating the critical factors with respect to the bolt tension-decrease phenomenon in SR suspension bridge in Korea, based on field monitoring, theoretical studies, and field record management works. From the observation, it is interesting to note that the decrease in the bolt tension force is typically accompanied by plastic deformation of the zinc plating layers in the cable wires. In addition, a framework corresponding to generic methodologies to characterize the deformation in terms of the bolt tension-decrease and long-term history management has been developed in this exploratory study.

Water masses and circulation around Cheju-Do in summer (하계 제주도 주변의 해역 및 해수순환)

  • Kim, Kuh;Rho, Hong-Kil;Lee, Sang-Ho
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.262-277
    • /
    • 1991
  • Hydrographic data taken at stations spaced 8-16 nautical miles in the Cheju Strait and the southeastern part of the Yellow Sea in June 1980 and August 1981 show for the first time that oceanic water of high temperature and high salinity exists within 20 km from the northern and western coast of Cheju-Do. It is confirmed that the low salinity trough in the sea around Cheju-Do originates from the river plume on the Yantze Bank. The salinity trough separates the high temperature and high salinity water around Cheju-Do from the surface water of the Yellow Sea and below the seasonal thermocline this distance water meets the Yellow Sea Cold Water forming a thermal front. The Yellow Sea Cold Water seems to spread southward along the Yantze Bank centered at the isobath of 70 m. Its characteristics also appear in the northern part of the Cheju Strait. these complex structures contradict the yellow Sea Warm current suggested by Uda 1934), which is supposed to flow northward into the Yellow Sea along the western coast of Korea. Our data show that dense hydrographic surveys in space and time are prerequisite to understand the circulation around Cheju-Do.

  • PDF