• Title/Summary/Keyword: 방사선 위험성 평가

Search Result 94, Processing Time 0.038 seconds

Comparison of Radiation Doses between 64-slice Single Source and 128-slice Dual Source CT Coronary Angiography in patient (64-slice single source CT와 128-slice dual source CT를 이용한 관상동맥 조영 검사 시 환자선량 비교)

  • Kang, Yeong-Han
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • The purpose of this study was to estimate radiation doses from 64-slice single source Computed Tomography(SSCT) coronary angiography(CA) and 128-slice dual source Computed Tomography(DSCT). With SSCT CA, the effective dose averaged approximately 13.86 mSv when two dose modulation was not. The mean effective dose for DSCT CA with retrospectively gated helical(RGH) technique was 11.87 mSv, when prospective ECG gating transverse(PGT) without dose modulation technique was 5.61 mSv. The one with dose modulation in PGT technique and flash mode were 3.04 mSv and flash mode was 0.98 mSv respectively. The lifetime attributable risk(LAR) of cancer incidence from SSCT RGH mode averaged approximately 1 for 1,176, and DSCT averaged 1 for 1,960(RGH mode), 1 for 3,030(PGT without modulation), 1 for 5,882(PGT with modulation). Because of CTCA is associated with non-negligible risk of cancer. Doses can be reduced by application PGT, FLASH than RGH using DSCT.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

THE EFFECT OF GENETIC VARIATION IN THE DNA BASE REPAIR GENES ON THE RISK OF HEAD AND NECK CANCER (DNA 염기손상 치유유전자의 변이와 두경부암 발생 위험성)

  • Oh, Jung-Hwan;Yoon, Byung-Wook;Choi, Byung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.509-517
    • /
    • 2008
  • DNA damage accumulates in cells as a result of exposure to exogenous agents such as benzopyrene, cigarette smoke, ultraviolet light, X-ray, and endogenous chemicals including reactive oxygen species produced from normal metabolic byproducts. DNA damage can also occur during aberrant DNA processing reactions such as DNA replication, recombination, and repair. The major of DNA damage affects the primary structure of the double helix; that is, the bases are chemically modified. These modification can disrupt the molecules'regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. DNA repair genes and proteins scan the global genome to detect and remove DNA damage and damage to single nucleotides. Direct reversal of DNA damage, base excision repair, double strand break. DNA repair are known relevant DNA repair mechanisms. Four different mechanisms are distinguished within excision repair: direct reversal, base excision repair, nucleotide excision repair, and mismatch repair. Genetic variation in DNA repair genes can modulate DNA repair capacity and alter cancer risk. The instability of a cell to properly regulate its proliferation in the presence of DNA damage increase risk of gene mutation and carcinogenesis. This article aimed to review mechanism of excision repair and to understand the relationship between genetic variation of excision repair genes and head and neck cancer.

Analysis of Surgical Risk Factors in Pulmonary (폐국균종의 수술위험인자 분석)

  • 김용희;이은상;박승일;김동관;김현조;정종필;손광현
    • Journal of Chest Surgery
    • /
    • v.32 no.3
    • /
    • pp.281-286
    • /
    • 1999
  • Background: The purpose of this study is to analyze the types of complications, the incidences of complications, and preoperative and postoperative risk factors affecting the incidence of the complication. Material and Method: Between August 1990 and August 1997 in Asan Medical Center, 42 patients(24 men and 18 women) underwent surgical resection for pulmonary aspergilloma. The mean age was 46.6${\pm}$11.5 years(range 29 to 69 years). Hemoptysis(90%) was the most common presentation. Pulmonary tuberculosis was the most common predisposing cause(81%). The associated diseases were bronchiectasis(n=11), active puolmonary tuberculosis(n=9), diabetes mellitus(n=8), lung carcinoid(n=1), and acute myeloblastic leukemia(n=1). Lobectomy was done in 32 cases(76%), segmentectomy or wedge resection in 4, pneumonectomy in 2, and lobectomy combined with segmentectomy in 4. Result: Operative mortality was 2%. The most common postoperative complication was persistent air leakage(n=6). The variables such as age, sex, pulmonary function test, amount and duration of hemoptysis, associated diseases(diabetes mellitus, active pulmonary tuberculosis), mode of preoperative management(steroid, antifungal agent, bronchial arterial embolization), and modes of operative procedures were statistically insignificant. The radiologic extent of infiltration to normal lung parenchyme was statistically significant(p=0.04). Conclusion: We conclude that the extent of the infiltration to normal lung parenchyme in preoperative radiologic studies should be carefully evaluated to reduce the postoperative complications in surgery for pulmonary aspergilloma.

  • PDF

Non-alcoholic Fatty Liver Disease Classification using Gray Level Co-Ocurrence Matrix and Artificial Neural Network on Non-alcoholic Fatty Liver Ultrasound Images (비알콜성 지방간 초음파 영상에 GLCM과 인공신경망을 적용한 비알콜성 지방간 질환 분류)

  • Ji-Yul Kim;Soo-Young Ye
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.735-742
    • /
    • 2023
  • Non-alcoholic fatty liver disease is an independent risk factor for the development of cardiovascular disease, diabetes, hypertension, and kidney disease, and the clinical importance of non-alcoholic fatty liver disease has recently been increasing. In this study, we aim to extract feature values by applying GLCM, a texture analysis method, to ultrasound images of patients with non-alcoholic fatty liver disease. By applying an artificial neural network model using extracted feature values, we would like to classify the degree of fat deposition in non-alcoholic fatty liver into normal liver, mild fatty liver, moderate fatty liver, and severe fatty liver. As a result of applying the GLCM algorithm, the parameters Autocorrelation, Sum of squares, Sum average, and sum variance showed a tendency for the average value of the feature values to increase as it progressed from mild fatty liver to moderate fatty liver to severe fatty liver. The four parameters of Autocorrelation, Sum of squares, Sum average, and sum variance extracted by applying the GLCM algorithm to ultrasound images of non-alcoholic fatty liver disease were applied as inputs to the artificial neural network model. The classification accuracy was evaluated by applying the GLCM algorithm to the ultrasound images of non-alcoholic fatty liver disease and applying the extracted images to an artificial neural network, showing a high accuracy of 92.5%. Through these results, we would like to present the results of this study as basic data when conducting a texture analysis GLCM study on ultrasound images of patients with non-alcoholic fatty liver disease.

The Effect of Steroid Injection of Simple Bone Cyst in Adults (성인에서 발생한 단순성 골 낭종에 대한 스테로이드 주입의 효과)

  • Yang, Jun-Young;Lee, June-Kyu;Kim, Dong-Hee;Kim, Tae-Hoon
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.12 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Purpose: To evaluate the effectiveness of steroid injection for treatment of simple bone cyst in adults. Materials and Methods: 11 patients who were able to be followed up from February 1998 to February 2003. These lesions were attained by needle aspiration or trepanation and 80 mg to 200 mg of Depo-medrol (methylprednisolone acetate, Shin Poong Pharm. Co., Korea) was injected. The follow-up roentgenograms were done every 2 weeks, and if there were no evidence of recovery, re-injection was done 8 weeks later. Injection has done maximally 5 times, and we evaluated the result with modified Neer, Pentimalli, Scaglietti and Sandra classification. Results: There were no cases in which one Injection was enough for full recovery, and 3 cases after 2 injections, 3 cases after 3 injections, 2 case after 5 injections had good result. but 2 cases after more than 5 injections did not show improvements and are currently under observation. One case showed a increase in size of the bone cyst after 2 injections of steroid and underwent curettage and autogenous bone graft. Overall outcomes by Pentimalli classification were good in One case, fair in 7 cases and poor in 3 cases at final follow-up. Conclusion: Local injection of steroids is effective method in adults and can be considered as a first line treatment modality.

  • PDF

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Radiological Impact on Decommissioning Workers of Operating Multi-unit NPP (다수호기 원전 운영에 따른 원전 해체 작업자에 대한 방사선학적 영향)

  • Lee, Eun-hee;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • The decommissioning of one nuclear power plant in a multi-unit nuclear power plant (multi-unit NPP) site may pose radiation exposure risk to decommissioning workers. Thus, it is essentially required to evaluate the exposure dose of decommissioning workers of operating multi-unit NPPs nearby. The ENDOS program is a dose evaluation code developed by the Korea Atomic Energy Research Institute (KAERI). As two sub-programs of ENDOS, ENDOS-ATM to anticipate atmospheric transport and ENDOS-G to calculate exposure dose by gaseous radioactive effluents are used in this study. As a result, the annual maximum individual dose for decommissioning workers is estimated to be $2.31{\times}10^{-3}mSv{\cdot}y^{-1}$, which is insignificant compared with the effective dose limit of $1mSv{\cdot}y^{-1}$ for the public. Although it is revealed that the exposure dose of operating multi-unit NPPs does not result in a significant impact on decommissioning workers, closer examination of the effect of additional exposure due to actual demolition work is required. The calculation method of this study is expected to be utilized in the future for planned decommissioning projects in Korea. Because domestic NPPs are located in multi-unit sites, similar situations may occur.

A Study on the Usefulness of Glass Dosimeter in the Evaluation of Absorbed Dose by Comparing the Doses of Multi-purpose Dosimeter and Glass Dosimeter Using Kerma with PCXMC 2.0 in DR(Digital Radiography) (DR(Digital Radiography)에서 PCXMC 2.0을 이용한 Kerma와 다목적 선량계, 유리선량계의 선량비교를 통한 흡수선량 평가 시 유리선량계의 유용성에 관한 연구)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.292-299
    • /
    • 2017
  • Radiation protection aims to prevent a deterministic effect and minimize a stochastic effect. Overestimating a deterministic effect and a stochastic effect can result in an inaccurate assessment of the risks that will occur in the future, and thus accurate evaluation of the absorbed dose of these fundamental amounts is especially important. This study was intended to measure Kerma using PCXMC 2.0 based on Monte Carlo simulations and to assess the exact absorbed dose by comparing doses produced using multipurpose dosimeter and glass dosimeter. It has been decided to conduct experiments for skull, abdomen and pelvis, and Kerma measured PCXMC 2.0 based on Monte Carlo simulations. The absorbed dose was measured using muli purpose dosimeter and glass dosimeter. The results for the experiments conducted in skull, abdomen, pelvis show that the difference in dose appears great in the order of PCXMC 2.0, muli purpose dosimeter, and the glass dosimeter, and muli purpose dosimeter showed a value closer to that of Kerma. As a result, it has been found that the glass dosimeter was the most advantageous in measuring the actual absorbed dose.