Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer

두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가

  • Baek, Min Gyu (Department of Radiation Oncology, Changwon Gyengsang National University Hospital) ;
  • Kim, Min Woo (Department of Radiation Oncology, Changwon Gyengsang National University Hospital) ;
  • Ha, Se Min (Department of Radiation Oncology, Changwon Gyengsang National University Hospital) ;
  • Chae, Jong Pyo (Department of Radiation Oncology, Changwon Gyengsang National University Hospital) ;
  • Jo, Guang Sub (Department of Radiation Oncology, Changwon Gyengsang National University Hospital) ;
  • Lee, Sang Bong (Department of Radiation Oncology, Changwon Gyengsang National University Hospital)
  • 백민규 (창원경상대학교병원 방사선종양학과) ;
  • 김민우 (창원경상대학교병원 방사선종양학과) ;
  • 하세민 (창원경상대학교병원 방사선종양학과) ;
  • 채종표 (창원경상대학교병원 방사선종양학과) ;
  • 조광섭 (창원경상대학교병원 방사선종양학과) ;
  • 이상봉 (창원경상대학교병원 방사선종양학과)
  • Published : 2020.12.27

Abstract

Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

목 적: 현대 방사선치료기술에서 종양표적위치 및 정상장기에 정확한 선량을 전달하기 위해 여러 방법의 영상유도방사선치료(Image Guided Radiation Therapy, IGRT)가 사용되고 있으며 그 중 선형가속기에 장착된 CBCT(Cone Beam Computed Tomography, CBCT)와 이외 장치인 ExacTrac(ExacTrac X-ray System)이 있다. 두 시스템을 비교한 이전 연구들에서는 Offline-review 이용하여 후향적으로 팬텀 및 환자의 Set-up 오차를 분석하거나 X, Y, Z 축과 하나의 회전방향(Couch Rotation)으로만 연구되어졌다. 본 연구에서는 Head and Neck Cancer 환자를 대상으로 CBCT와 ExacTrac을 이용하여 한 치료중심센터에서 각각 6 DoF(Degree Of Freedom) IGRT를 시행한 후, 두 IGRT 장비에서 나타난 팬텀 및 환자의 Set-up 오차, 환자 Set-up에 걸리는 시간, 노출 방사선량의 비교를 통해 유용성을 평가하고자 한다. 대상 및 방법: Rando Phantom을 이용하여 환자 움직임을 배제한 상태의 Set-up 오차 평가와 Head and Neck Cancer 환자의 Set-up 오차 값 두 가지 경우로 나누어 획득하였다. 노출 방사선량 평가는 유리선량계로 하였다. 환자 Set-up 후 IGRT 시행하는데 소요되는 시간을 평가하기 위해 Head and Neck Cancer 환자 11명을 대상으로 하였다. 총 치료기간동안 환자 당 평균 10회의 CBCT와 ExacTrac 영상을 동시에 얻었고, 관심영역지정(Region Of Interest, ROI) 설정 후 6D 온라인 자동위치교정(Online Automatching) 값의 차를 6개의 축(Translation group: SI, AP, LR; Rotation group: Pitch, Roll, Rtn)으로 각각 계산하였다. 결 과: Phantom과 환자에서 Set-up 오차는 Translation group에서 1mm 미만, Rotation group에서 1.5° 미만의 차이가 보였으며, Rtn 값을 제외한 다른 모든 축의 RMS 값이 1mm, 1° 미만으로 나타났다. 각 시스템에서 최종적으로 Set-up 오차 교정까지 걸리는 시간은 CBCT를 이용한 IGRT에서는 평균 256±47.6sec, ExacTrac을 이용 시 평균 84±3.5sec로 각각 나타났다. 1회 치료 당 IGRT에 의한 방사선 노출선량은 Head and Neck 부위 7곳의 측정위치 중 Oral Mucosa에서 CBCT와 ExacTrac이 각각 2.468mGy, 0.066mGy로 상대적으로 ExacTrac에 비해 피폭선량이 37배 높게 측정되었다. 결 론: CBCT와 ExacTrac 두 시스템 간의 6D 온라인 자동위치교정을 통해 Set-up 오차는 두 시스템의 자체적인 Systematic error 뿐 아니라, 환자 움직임(Random error)를 포함한 Set-up 오차가 1mm, 1.02° 미만으로 나타났다. 이는 본원에서 Head and Neck IMRT 치료 시 PTV Margin이 3mm이라는 것을 고려했을 때, 이 오차범위는 합리적으로 사료된다. 하지만 치료기간 동안 환자체중변화로 인한 따른 표적, 손상위험장기의 변화를 고려했을 때 CBCT와 적절히 병용하여 사용하는 것이 좋을 것으로 사료된다.

Keywords

References

  1. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179
  2. Lee N, et al.: Int J Radiat Oncol Biol Phys. 2003: Intensity-modulated radiation therapy for head-and-neck cancer: The UCSF experience focusing on target volume delineation: 2003 Sep 1;57(1):49-60. https://doi.org/10.1016/S0360-3016(03)00405-X
  3. Miyabe Y, et al.: Med Phys. 2011: Positioning accuracy of a new image-guided radiotherapy system: 2011 May;38(5):2535-41 https://doi.org/10.1118/1.3578607
  4. Hansen EK, Larson DA, Aubin M, et al.: Image-guided radiotherapy using megavoltage cone-beam computed tomography for treatment of parasipinous tumors in the presence of orthopedic hardware: Int J Radiat Oncol Biol Phys 2006;66:323-6 https://doi.org/10.1016/j.ijrobp.2006.05.038
  5. Ryu SI, Chang SD, Kim DH, et al: Image-guided radiosurgery for the spine and pancreas: Comput Aided Surg 2000;5:278-88. https://doi.org/10.3109/10929080009148895
  6. Murphy, M.J., Adler, J.R. Jr., Bodduluri, M. et al: Image-guided radiosurgery for the spine and pancreas: Comput Aided Surg. 2000;5:278-288. https://doi.org/10.3109/10929080009148895
  7. Yin, F.F., Ryu, S., Ajlouni, M. et al: Image-guided procedures for intensity-modulated spinal radiosurgery: Technical note. J Neurosurg. 2004;101:419-424. https://doi.org/10.3171/sup.2004.101.supplement3.0419
  8. Yin, F.F., Wang, Z., Yoo, S. et al: Integration of conebeam CT in stereotactic body radiation therapy: Technol Cancer Res Treat. 2008;7:133-139. https://doi.org/10.1177/153303460800700206
  9. van Herk, M.: Different styles of image-guided radiotherapy: Semin Radiat Oncol. 2007;17:258-267. https://doi.org/10.1016/j.semradonc.2007.07.003
  10. Guckenberger, M., Meyer, J., Wilbert, J., Baier, K., Sauer, O., Flentje, M.: Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice: Strahlenther Onkol. 2007;183:307-313. https://doi.org/10.1007/s00066-007-1695-0
  11. Moseley, D.J., White, E.A., Wiltshire, K.L. et al: Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate: Int J Radiat Oncol Biol Phys. 2007;67:942-953. https://doi.org/10.1016/j.ijrobp.2006.10.039
  12. Murphy, M.J., Balter, J., Balter, S. et al: The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys. 2007;34:4041-4063. https://doi.org/10.1118/1.2775667
  13. Kan, M.W., Leung, L.H., Wong, W., Lam, N.: Radiation dose from cone beam computed tomography for image-guided radiation therapy: Int J Radiat Oncol Biol Phys. 2008;70:272-279. https://doi.org/10.1016/j.ijrobp.2007.08.062
  14. Jin, J.Y., Yin, F.F., Tenn, S.E., Medin, P.M., Solberg, T.D.: Use of the BrainLAB ExacTrac X-ray 6D system in image-guided radiotherapy: Med Dosim. 2008;33:124-134. https://doi.org/10.1016/j.meddos.2008.02.005
  15. Clemente S, et al.: Is Exactrac X-ray System an alternative to CBCT for Positioning Patients Head and Neck Cancers?: Med Phys. 2013 Nov ; 40(11): 111725. https://doi.org/10.1118/1.4824056
  16. Chang Z, et al.: 6D image guidance for spinal noninvasive stereotactic body radiation therapy: Comparison between ExacTrac X-ray 6D with kilovoltage cone-beam CT: Radiother Oncol. 2010 Apr;95(1):116-21. https://doi.org/10.1016/j.radonc.2009.12.036
  17. Ma J, et al.: ExacTrac X-ray 6 degree-of-freedom image-guidance for intracranial non-invasive stereotactic radiotherapy: comparison with kilovoltage cone-beam CT: Radiother Oncol. 2009 Dec;93(3):602-8. https://doi.org/10.1016/j.radonc.2009.09.009
  18. Se an Oh, et al.: Evaluations of the setup discrepancy between BrainLAB 6D ExacTrac and conebeam computed tomography used with the imaging guidance system Novalis-Tx for intracranial stereotactic radiosurgery: PLos ONE 12(5):e0177798. https://doi.org/10.1371/journal.pone.0177798