• 제목/요약/키워드: 문서특징벡터

검색결과 45건 처리시간 0.024초

주성분 분석과 k 평균 알고리즘을 이용한 문서군집 방법 (Document Clustering Technique by K-means Algorithm and PCA)

  • 김우생;김수영
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.625-630
    • /
    • 2014
  • 컴퓨터의 발전과 인터넷의 급속한 발전으로 정보의 양이 폭발적으로 증가하게 되었고 이러한 방대한 양의 정보들은 대부분 문서 형태로 관리되기 때문에, 이들을 효과적으로 검색하고 처리하는 방법의 연구가 필요하다. 문서 군집은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 대용량의 문서들을 자동으로 분류하고 검색하고 처리하는데 효율과 정확성을 증대시킨다. 본 논문은 특징 벡터 공간 상의 벡터들로 표현되는 문서들을 K 평균 알고리즘으로 군집화할 때, 주성분 분석을 사용하여 초기 시드점들을 선정함으로써 군집의 효율을 높이는 방법을 제안한다. 실험 결과를 통하여 제안하는 기법이 기존의 K 평균 알고리즘보다 좋은 결과를 얻을 수 있음을 보였다.

문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델 (Hybrid Word-Character Neural Network Model for the Improvement of Document Classification)

  • 홍대영;심규석
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1290-1295
    • /
    • 2017
  • 문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.

한글문서분류에 SVD를 이용한 BPNN 알고리즘 (BPNN Algorithm with SVD Technique for Korean Document categorization)

  • 리청화;변동률;박순철
    • 한국산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.49-57
    • /
    • 2010
  • 본 논문에서는 역전파 신경망 알고리즘(BPNN: Back Propagation Neural Network)과 Singular Value Decomposition(SVD)를 이용하는 한글 문서 분류 시스템을 제안한다. BPNN은 학습을 통하여 만들어진 네트워크를 이용하여 문서분류를 수행한다. 이 방법의 어려움은 분류기에 입력되는 특징 공간이 너무 크다는 것이다. SVD를 이용하면 고차원의 벡터를 저차원으로 줄일 수 있고, 또한 의미있는 벡터 공간을 만들어 단어 사이의 중요한 관계성을 구축할 수 있다. 본 논문에서 제안한 BPNN의 성능 평가를 위하여 한국일보-2000/한국일보-40075 문서범주화 실험문서집합의 데이터 셋을 이용하였다. 실험결과를 통하여 BPNN과 SVD를 사용한 시스템이 한글 문서 분류에 탁월한 성능을 가지는 것을 보여준다.

문서의 계층화를 이용한 문서비교 방법 (The Method of Document Comparison using Document Hierarchy)

  • 황명권;공현장;황광수;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.143-147
    • /
    • 2006
  • 오늘날 웹의 비약적인 성장으로 텍스트, 이미지, 비디오, 그리고 사운드 등의 다양한 데이터 형식의 많은 정보가 축적되었으며 날마다 늘어나고 있다. 이들 정보의 효율적 검색을 위해 많은 연구가 이루어졌으며, 특히 텍스트 문서의 효율적인 검색을 위해 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터 유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등이 제안되었다. 그러나 이러한 기존의 방법들은 문서의 특징을 정확하게 반영할 수 없고, 의미적 검색이 이루어지지 않는 단점을 가지고 있다. 이에 본 논문은 문서를 미리 분류하는 기존의 방법을 개선하기 위해, 사용자가 원하는 문서와 비슷한 문서를 의미적으로 찾아내기 위한 방법을 제안한다. 본 방법론은 문서의 내용을 의미적인 계층으로 표현하고 중요 도메인에 가중치를 두어 각 문서들의 계층들의 도메인 비중과 도메인 내의 개념 일치도를 이용하여 문서들 간에 유사도를 구한다.

  • PDF

Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 (Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features)

  • 장익훈;이우신;김남철
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.76-85
    • /
    • 2011
  • 본 논문에서는 Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 방법을 제안한다. 제안된 방법에서는 먼저 시험 영상에 Gabor 변환과 웨이브렛 변환을 적용한다. 웨이브렛 영역의 상세 대역에는 Donoho의 연역치화를 적용하여 잡음을 제거한다. 이어서 Gabor 영상에는 크기 연산자를 적용하고 웨이브렛 부대역에는 BDIP와 BVLC 연산자를 적용한다. 그런 다음 Gabor 크기 영상과 BDIP, BVLC 부대역에 대하여 통계치를 계산하여 그 결과들을 벡터화하고 융합하여 특징 벡터로 사용한다. 분류 단계에서는 얼굴 인식에 주로 사용되는 WPCA를 분류기로 하여 시험 특징 벡터와 가장 유사한 학습 특징 벡터를 찾는다. 실험 결과 제안된 방법은 실험 문서 영상 DB에 대하여 비교적 낮은 특징 벡터 차원으로 매우 우수한 언어 인식 성능을 보여준다.

다양한 크기 및 활자체를 갖는 인쇄체 한글 영상의 문서화에 관한 연구 (A Study on Documentization of Printed Hangul Image with Multi-size and Multi-style)

  • 김장욱;김경숙;손영선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.295-298
    • /
    • 2001
  • 본 논문에서는 CCD카메라로 입력 받은 다중 크기 및 활자체로 구성된 한글문서의 화상 데이터를 편집기에서 수정 가능한 문자로 변환시키는 시스템을 구현하였다. 먼저 Dynamic 이 진화 처리 과정을 거친 화상을 흑백 화소의 누적분포에 따라 문자단위로 분할한 후, 다양한 크기로 분할된 문자를 표준패턴 크기로 표준화 시켰다. 한글을 자소 간 공백 위치의 특징에 따라서 6가지 유형으로 분류한 후, 퍼지 이론을 접목시킨 원형 패턴 벡터 알고리즘을 사용해서 표준벡터와 입력된 글자의 특징벡터를 비교하여 문자로 인식하게 하였다. 각 6가지 유형에서 서로 다른 자소로 결합된 문자들을 30개 선정하여 여러 가지 활자체 및 크기에 적용해 본 결과, 모두 문서화가 가능함을 알 수 있었다.

  • PDF

영상 대 영상 매칭을 이용한 한글 문서 영상에서의 단어 검색 (Keyword Spotting on Hangul Document Images Using Image-to-Image Matching)

  • 박상철;손화정;김수형
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.357-364
    • /
    • 2005
  • 본 논문에서는 두 단계 이미지 매칭을 이용하여 한글 문서영상에서 사용자 검색어를 빠르고 정확하게 검색할 수 있는 시스템을 제안한다. 본 시스템은 문자 분리, 검색어 영상 생성, 특징 추출 그리고 이미지 매칭 과정으로 구성된다. 매칭 과정에서 차원이 다른 두 가지 특징 벡터를 이용한다. 8쪽 분량의 문서 영상을 한국정보과학회 웹사이트에서 다운로드하였고, 그 문서로부터 1600개의 한글단어 영상을 획득하여 실험데이터로 사용하였다 그 결과 제안한 시스템은 기존에 제안된 영상-기반 한글 단어 검색 시스템보다 성능이 크게 향상되었음을 알 수 있었다.

문서 내용의 계층화를 이용한 문서 비교 방법 (Document Clustering Methods using Hierarchy of Document Contents)

  • 황명권;배용근;김판구
    • 한국정보통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.2335-2342
    • /
    • 2006
  • 웹의 비약적인 성장으로 웹에는 무수한 정보를 축적하고 있으며, 특히 텍스트 문서는 인간에 의해 가장 쉽게 그리고 많이 이용되는 형식이라 하겠다. 텍스트 문서의 효율적 검색을 위해 많은 연구가 이루어졌으며, 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터 유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등이 제안되었다. 그러나 이러한 기존의 방법들은 문서의 특징을 정확하게 반영할 수 없고, 의미적 검색이 이루어지지 않는 단점을 가지고 있다 이에 본 논문은 문서를 미리 분류하는 기존의 방법을 개선하기 위해, 유사한 문서를 의미적으로 찾아내기 위한 새로운 문서 분류의 척도를 제안하며 이를 적용하는 방법을 제시한다. 본 방법은 문서의 내용을 의미적인 계층으로 표현하고 중요 도메인에 가중치를 두며, 문서들간의 도메인 가중치와 도메인 내의 개념 일치도를 이용하여 유사도를 구한다.

단어의 의미와 문맥을 고려한 순환신경망 기반의 문서 분류 (Document Classification using Recurrent Neural Network with Word Sense and Contexts)

  • 주종민;김남훈;양형정;박혁로
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.259-266
    • /
    • 2018
  • 본 논문에서는 단어의 순서와 문맥을 고려하는 특징을 추출하여 순환신경망(Recurrent Neural Network)으로 문서를 분류하는 방법을 제안한다. 단어의 의미를 고려한 word2vec 방법으로 문서내의 단어를 벡터로 표현하고, 문맥을 고려하기 위해 doc2vec으로 입력하여 문서의 특징을 추출한다. 문서분류 방법으로 이전 노드의 출력을 다음 노드의 입력으로 포함하는 RNN 분류기를 사용한다. RNN 분류기는 신경망 분류기 중에서도 시퀀스 데이터에 적합하기 때문에 문서 분류에 좋은 성능을 보인다. RNN에서도 그라디언트가 소실되는 문제를 해결해주고 계산속도가 빠른 GRU(Gated Recurrent Unit) 모델을 사용한다. 실험 데이터로 한글 문서 집합 1개와 영어 문서 집합 2개를 사용하였고 실험 결과 GRU 기반 문서 분류기가 CNN 기반 문서 분류기 대비 약 3.5%의 성능 향상을 보였다.

한글 위키피디아를 이용한 트위터 문서의 주제별 클러스터링 기법 (Topical Clustering Techniques of Twitter Documents Using Korean Wikipedia)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.189-196
    • /
    • 2014
  • 최근 들어 트위터와 같은 SNS 환경에서 검색의 필요성이 증가하고 있다. 트위터 검색을 지원하기 위해서는 다량으로 검색된 문서를 주제별로 분류하는 클러스터링 기법이 필요하다. 하지만 트위터의 특성상 단순한 클러스터링 기술을 그대로 적용하기에는 많은 제약이 따른다. 본 논문에서는 이를 극복하기 위해 트위터 환경에 적합한 클러스터링 기법을 제안한다. 제안된 기법에서는 한글 위키피디아를 이용하여 각 트위터 문서에 대한 특징 벡터를 보강하고 각 특징들의 가중치를 재계산하는 방법을 이용하였다. 또한 한글 트위터 문서를 대상으로 실험을 실시하고 기존 기법과의 성능 비교를 통해서 제안된 기법의 유용성을 증명하였다.