Abstract
The current web is accumulating abundant information. In particular, text based documents are a type used very easily and frequently by human. So, numerous researches are progressed to retrieve the text documents using many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both subject and semantic of documents. So, to overcome the previous problems, we propose the document similarity method for semantic retrieval of document users want. This is the core method of document clustering. This method firstly, expresses a hierarchy semantically of document content ut gives the important hierarchy domain of document to weight. With this, we could measure the similarity between documents using both the domain weight and concepts coincidence in the domain hierarchies.
웹의 비약적인 성장으로 웹에는 무수한 정보를 축적하고 있으며, 특히 텍스트 문서는 인간에 의해 가장 쉽게 그리고 많이 이용되는 형식이라 하겠다. 텍스트 문서의 효율적 검색을 위해 많은 연구가 이루어졌으며, 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터 유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등이 제안되었다. 그러나 이러한 기존의 방법들은 문서의 특징을 정확하게 반영할 수 없고, 의미적 검색이 이루어지지 않는 단점을 가지고 있다 이에 본 논문은 문서를 미리 분류하는 기존의 방법을 개선하기 위해, 유사한 문서를 의미적으로 찾아내기 위한 새로운 문서 분류의 척도를 제안하며 이를 적용하는 방법을 제시한다. 본 방법은 문서의 내용을 의미적인 계층으로 표현하고 중요 도메인에 가중치를 두며, 문서들간의 도메인 가중치와 도메인 내의 개념 일치도를 이용하여 유사도를 구한다.