References
- J. H. Kim, J. H, Kim, K. M. Kim, and B. T. Zhang, "Large-Scale Text Classification with Convolution Neural Networks," Korean Information Science Society Conference Proceedings, pp.792-794, 2015.
- P. Soucy and G. W. Mineau, "Beyond TFIDF weighting for text categorization in the vector space model," IJCAI, Vol. 5, 2005.
- C. H. Lee, Chang and S. C. Park, "BPNN Algorithm Using SVD for Korean Document Classification," Journal of the Korea Industrial Information System Society, Vol.15, No.2 pp.49-57, 2010.
- G. Salton, A. Wong, and C. S. Yang, "A vector space model for automatic indexing," Communications of the ACM, Vol.18, No.11, pp.613-620, 1975. https://doi.org/10.1145/361219.361220
- J. W. Hwang and Y, J, Ko, "A Studyon Sentiment Features Extractionand Their Weight Boosting Methodfor Korean Document Sentiment Classification," Journal of KISS: Computing Practice and Letters, Vol.14, No.3, pp.336-340, 2008.
- Y., Goldberg and O. Levy, "word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method," arXiv preprint arXiv:1402.3722, 2014.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, 2012.
- J. M. Kim and J. H. Lee, "Text Document Classification Based on Recurrent Neural Network Using Word2vec," Journal of Korea Institute of Intelligent Systems, Vol.27, No.6, pp.560-565, 2017. https://doi.org/10.5391/JKIIS.2017.27.6.560
- T. Mikolov, I. Sutskever, K. Chen, G. S., Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," Advances in Neural Information Processing Systems, 2013.
- HANTEC Data Set [Internet], http://www.kristalinfo.com/TestCollections/#hkib
- M. Cassel, and F. Lima, "Evaluating one-hot encoding finite state machines for SEU reliability in SRAM-based FPGAs," On-Line Testing Symposium, 2006. IOLTS 2006. 12th IEEE International, IEEE, 2006.
- J. H. Lau, and T. Baldwin, "An empirical evaluation of doc2vec with practical insights into document embedding generation," arXiv preprint arXiv:1607.05368.
- Q. Le and T. Mikolov, "Distributed representations of sentences and documents," International Conference on Machine Learning, 2014.
- F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM," pp.850-855, 1999.
- K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
- 20Newsgroups Data Set [Internet], http://qwone.com/-jason/20Newsgroups/
- Text Classification Data Sets [Internet], http://goo.gl/JyCnZq
- Python Package for Natural Language Processing [Internet], http://konlpy.org/en/v0.4.4/
- J. Y. Lee, "A Study on the Improvement of Document Classification Performance of SVM Classifier Using Document Similarity," Journal of the Korean Society for Information Management, Vol.22 No.3, pp.261-287, 2005. https://doi.org/10.3743/KOSIM.2005.22.3.261
- J. M. Kim and J. H. Lee, "A study on RNN based document classification using Word2vec," Journal of Korea Institute of Intelligent Systems, Vol.27, No.6, pp.560-565, 2017. https://doi.org/10.5391/JKIIS.2017.27.6.560
- Jiang, Z., Zhang, S., & Zeng, J. "A hybrid generative/discriminative method for semi-supervised classification," Knowledge-Based Systems, Vol.37, pp.137-145, 2013. https://doi.org/10.1016/j.knosys.2012.07.020
- N. H. Kim and H. J. Yang, "Classification of Hangul Documents Based on CNN Using Document Indexing Method Considering Meaning and Order of Words," Korean Computer Education Association Conference Paper, Vol.21, No.2, pp.41-45, 2017.