• Title/Summary/Keyword: 무기패널

Search Result 20, Processing Time 0.024 seconds

Developing Sustainable Inorganic Sound-Absorbing Panel Mixtures Using Industrial Waste (산업폐기물을 활용한 무기계 흡음 패널 개발 기초 연구)

  • Cheulkyu Lee;Seongwoo Gwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.501-508
    • /
    • 2023
  • Addressing urban noise problems, this study develops eco-friendly, inorganic sound-absorbing panels, overcoming the limitations of traditional PMMA and cement-based panels. These conventional panels pose safety risks due to flammability and environmental concerns due to carbon emissions. Utilizing industrial waste, the research comprises two phases: initial tests for physical and performance characteristics (fluidity, density, compressive strength, sound absorption) and subsequent development of optimized panel mixtures. This approach aims to replace existing panels with sustainable, effective alternatives, significantly contributing to safer, environmentally responsible urban infrastructure. The findings of this study have implications for the sound panel market, offering novel solutions for noise control while aligning with environmental and safety standards.

Performance Evaluation of Curtain-Wall Applying Light-weight Inorganic Foam Panel (경량 무기 발포패널을 적용한 커튼월의 성능평가)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.211-212
    • /
    • 2012
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain fire resistance performance of the curtain walls. This study focused on evaluation of the physical properties of light-weight inorganic foam panel for using industrial by-products materials and performance evaluation by mock up test.

  • PDF

A Study on the Cone Calorimeter Evaluation Method of Sandwich Panels (복합자재 콘칼로리미터평가방법에 대한 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • Fires in buildings built using sandwich panels are difficult to extinguish, and the damage caused by the fire spreading through the inner core material is extensive. Sandwich panels consist of a nonflammable material on both sides of an insulation material. The types of insulation material include organic and inorganic insulation materials, but the former are used in more than 80% of the case. Organic insulation is economically advantageous compared to inorganic insulation, but it is vulnerable to fire. Therefore, the damage caused by sandwich panel fires is higher than that for general fires. In the case of the noxious gas analyzer test, the panel is tested with three round holes having a diameter of 25 mm, in order to determine the risk of the core material, but the cone calorimeter test is carried out using a sandwich panel. In this study, the cone calorimeter test was conducted to examine the fire risk of the composite material when heated on a nonflammable surface, exposed to the core material through a hole, and heated directly the core material. The type of organic insulation employed was flame retardant EPS (Expanded Polystyrene), and the test specimens were tested in three types of sandwich panel, a perforated sandwich panel and single core material. The purpose of this study is to propose a method of measuring the fire risk of the core materials of composite materials using the cone calorimeter test.

Analysis and Estimation for Stress Distributions under the Spacer Arrangement in a Vacuumed-Panel (진공패널의 지지대 배열에 따른 응력분석 및 평가)

  • Kim, Jae-Kyung;Jeon, Euy-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.159-162
    • /
    • 2009
  • 세계적인 에너지 자원 무기화와 더불어 에너지 효율이 높은 창호개발이 지속적으로 진행되고 있다. 이중 진공패널은 단열성능이 우수하여 건물에서의 에너지 절약 측면에서 미래의 창호소재로 각광 받고 있으나 구조 및 제조공법에 관한 규명이 되어 있지 않다. 진공패널은 대기압 및 외력에 견딜 수 있도록 구조를 형성해야 하며, 이를 위하여 진공간극을 유지하기 위한 지지대를 사용한다. 본 논문에서는 진공패널에서 지지대의 배열에 따른 진공패널의 응력분석과 이 데이터 평가를 통한 허용응력 내에서의 유리지지대 배열방안을 제시하고 시뮬레이션을 통해 그 타당성을 검증하였다.

  • PDF

Dry Shrinkage Characteristic according to the Ternary System Inorganic Binder Panel Size (3성분계 무기결합재 패널크기에 따른 건조수축 특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.144-145
    • /
    • 2014
  • In the cement,that is the main materials of the panel, as to the cofired process, more than 1,300 enormous energies is consumed, in addition the greenhouse gas generated in the process of producing the cement occupies 6.3% of the country whole emission quantity. And the carbon dioxide of about 0.8 ton is the cement ejected in 1 production. Accordingly, the panel utilizing the industrial byproduct is developed. Accordingly, this research is the experiment which makes the individual size into the environment-friendly inorganic binder panel and by using the blast furnace slag, which is the industrial byproduct with the cement substitute material red mud, silica fume, and etc. looks at the dry shrinkage. The length variation in which the panel which is 450 with the dry shrinkage result of measurement, thickness 12mm, and size 450mm is the smallest was shown.

  • PDF

Characteristic of Insulation with Moisture Content Light-weight Inorganic Foam Ceramic Board (경량무기발포 세라믹보드 및 무기단열재의 함수율에 따른 단열특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The inorganic material has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain water resistance performance of the curtain walls. This study focused on evaluation of insulation of inorganic materials and performance evaluation by thermal conductivity.

  • PDF

A Study on the Construction Performance of Curtain Wall Systems Using Fire-Resistant & Light-Weight Inorganic Composite Foam Board (내화성 경량 무기 발포보드를 이용한 커튼월 시스템의 시공성능에 관한 연구)

  • Koo, Young-Ah;Kim, Seong-Eun;Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This study had the goal of analyzing the economic feasibility and constructability of a fire resistant curtain wall system using Light-weight Inorganic Composite Foam Board(LI-CFB). LI-CFBs, new materials with excellent fire resistance are being developed for use as the back panel of curtain wall and their fire resistance has already been analyzed through actual tests in earlier studies. In this study, a mock-up test involving the installation of the fire resistant curtain wall system on an actual building was conducted, and the system was compared with a common curtain wall system. This system is applied in the same way as a common curtain wall system. But the cutting LI-CFBs, which are brought from a factory, are used in the system and attached on the frame (mullion and transom). Even though the system requires more working time than the existing system, the LI-CFBs back panels are easy to cut and do not produce dust. Also, the panels are able to be assured the quality by checking damaged parts easily. Besides having a high level of fire resistance, the system's economic feasibility and constructability meets or exceeds those of the existing system.

Aerodynamic Analysis of Counter-Rotating Propfans Around a Missile-Like-Body Using a Frequency Domain Panel Method (주파수영역 패널기법을 사용한 유도무기형태 동체에 장착된 엇회전식 프롭팬의 공력해석)

  • 조진수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1590-1597
    • /
    • 1994
  • The aerodynamic analysis of a $6{\times}6$ counter-rotating propfan around a missile-like-body has been completed analytically using a frequency domain panel method. The present method requires Fourier transformation of flow field around the propfan in computing the velocities normal to the propfan lifting surfaces. The aerodynamic performance curve is determined by angle of attack and nonuniform inflow conditions. The inflow conditions result from the variations of missile flight speed, angle of attack, propfan location relative to control surfaces and control surface deflection angle. The two cases of propfan location relative to control surface, front and behind, are analyzed and the aerodynamic results are presented.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

유연 OLED디스플레이 구현을 위한 박막 봉지 기술

  • Han, Ju-Hwan;Lee, Seong-Hyeon;Park, Jin-Seong
    • Information Display
    • /
    • v.20 no.3
    • /
    • pp.48-56
    • /
    • 2019
  • 유연 OLED 디스플레이 구현을 위한 박막 봉지 기술에 대해 두 가지 관점으로 살펴보았다. 첫 번째 다층 구조를 통한 박막 봉지 특성 개선에 대한 연구는 현재까지 다양한 연구들이 진행되어 왔으며 활발히 진행 중이다. 특히 우수한 투습 방지 특성을 가지며 동시에 기계적 내구성을 잃지 않기 위해 유 무기 적층구조는 중요한 연구 주제였다. 유기물 층은 다양한 소재, 증착 방법들이 연구되었으며 무기물 층은 ?고 좋은 특성을 가지기 위해 원자층 증착법을 활용하는 것이 중요하다. 특히 원자층 증착법이 대면적 증착이 가능하며, 균일도가 높다는 점에서 향후 양산에서도 활용이 가능하다는 점에서 원자층 증착법과 분자층 증착법을 통한 유 무기 적층 구조 연구가 중요하다고 할 수 있다. 또한 막에 구조적인 변화를 주어 가해자는 응력을 최소화하는 방법을 소개하였다. 이론적으로 전체막에서 외부 응력이 가해지더라도 받는 응력이 0이 되는 중립면을 활용하면 큰 외부 응력이 막에 가해지더라도 열화가 확연히 줄어든 연구 결과들이 있었다. 결론적으로 유연 OLED 디스플레이 구현하기 위해 박막 봉지 측면에서 이루어 져야 할 연구의 방향은 소재적으로 유 무기 적층 구조를 통한 막 내구성 및 투습 방지 특성 확보가 중요하고 구조적으로는 OLED 패널 제작 시 박막 봉지 층 이외에 상부 추가되는 막의 두께와 탄성 계수를 조절하여 기계적 내구성이 낮은 백플레인 부분과 박막 봉지 부분을 중립면에 위치시켜 외부 응력으로부터 자유로워 지도록 하는 방향으로 진행될 것으로 예상된다.