• Title/Summary/Keyword: 모드합성법

Search Result 95, Processing Time 0.024 seconds

Structural Dynamics Modification using Reduced Model for Having Non-matching Nodes (불일치 절점을 가지는 경우의 축약된 모델을 이용한 동특성 변경법)

  • Kang, Ok-Hyun;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.830-833
    • /
    • 2005
  • SDM(Structural Dynamics Modification) is to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary(modifying) structures. In this paper, I will focus on the optimal layout of the stiffeners which are attached to the plate to maximize 1st natural frequency. Recently, a new topology method was proposed by yamazaki. He uses growing and branching tree model. I modified the growing and branching tree model. The method is designated modified tree model. To expand the layout of stiffeners, I will consider non-matching problem. The problem is solved by using local lagrange multiplier without the mesh regeneration. Moreover The CMS(Component mode synthesis) method is employed to reduce the computing time of eigen reanalysis using reduced componet models.

  • PDF

A Study on the Identification & Improvement of Dynamic Characteristics of Compressor Shell by Substructure Synthesis Method (부분구조합성법을 이용한 컴프레서 쉘의 동특성 규명 및 개선에 관한 연구)

  • Kim, Dong-Kyu;Kim, Jong-Bae;Go, Sang-Chul;Han, Kwang-Hee;Oh, Jae-Eung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.99-106
    • /
    • 1996
  • The noise of a compressor is a major contributor to overall noise radiated from the refrigerator. The major source of the noise is radiated by the vibration of the compressor shell. In this study, to identify the dynamic characteristics of compressor shell, a compressor shell is divided into several components and these are analyzed with a commercial FEM(Finite Element Method) package such as MSC/NASTRAN. Using substructure synthesis method, the dynamic characteristics of the total system is identified. The coherence of each component to the total system is computed by using strain and kinetic energy. To increase the frequency of the first resonance mode which is most effective mode to the noise of the compressor shell, the improving strategy of dynamic characteristics is suggested by changing mass and stiffness of the coherence component to the first mode.

  • PDF

Free and Ambient Vibration of Steel-Deck Truss Bridge (강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구)

  • Jung, Sung Yeop;Oh, Soon Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • This study describes an analytical and experimental investigation of the pedestrian steel-deck truss bridge in the City of Rochester, New York, U.S.A. This investigation was undertaken to provide assurance that this important bridge continues to be functional for this use. An ambient vibration experiment on full-scale structures is a way of assessing the reliability of the various assumptions employed in the mathematical models used in analysis. It is also the most reliable way of determining the structural parameters of major importance in structural dynamics, such as the mode shapes and the associated natural frequencies. Pedestrian-induced vibrations have been measured on the bridge to determine the displacement and the vertical and transverse dynamic characteristics of the steel deck truss. In the analytical modeling, three-dimensional finite element analysis was developed and validated against the ambient tests.

Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates (단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정)

  • Bong Hyun Seo;Yonas Tsegaye Megra;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.377-382
    • /
    • 2023
  • To enhance the performance of graphene-based devices, it is of great importance to better understand the interfacial interaction of graphene with its underlying substrates. In this study, the adhesion energy of monolayer graphene placed on dielectric substrates was characterized using mode I fracture tests. Large-area monolayer graphene was synthesized on copper foil using chemical vapor deposition (CVD) with methane and hydrogen. The synthesized graphene was placed on target dielectric substrates using polymer-assisted wet transfer technique. The monolayer graphene placed on a substrate was mechanically delaminated from the dielectric substrate by mode I fracture tests using double cantilever beam configuration. The obtained force-displacement curves were analyzed to estimate the adhesion energies, showing 1.13 ± 0.12 J/m2 for silicon dioxide and 2.90 ± 0.08 J/m2 for silicon nitride. This work provides the quantitative measurement of the interfacial interactions of CVD-grown graphene with dielectric substrates.

A Double Coupling Full-Bridge Configuration Series Resonant Inverter (이중 결합 Full-Bridge 방식 직렬 공진형 인버터)

  • 배영호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • This research proposes a high frequency resonant inverter for high power conversion apparatus, which is consist of two L-C linked full-bridge inverter using MOSFET in order to distribute voltage and current of the devices. As an output power control strategy, the time sharing control method is applied. From the computer simulation results, the inverters and devices can be shared properly voltage and current rating of the system. And also, theoretical characteristics of the proposed circuit are compared with experimental results.

Damage Curves for the Shear Building to the Local Impact (국부충격에 의한 전단건물의 손상곡선)

  • Lee, Sang-Ho;Hwang, Sin-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 2004
  • The damage curves for the 2-story shear building to the impulsive rectangular loads were established with the peak load and Impulse ratio producing the critical displacement. The convolution integrations with the Impulse response matrix and the loads were used to find the responses of the building. The impulse response matrix required in the calculations of the convolution integration were found with the mode superposition method It is shown from the established damage curves that the responses of the top and bottom floor are sensitive to the magnitude and the impulse of the loads respectively.

Dynamic Design of Machine Tool Structure by Substructure Synthesis Method (부분구조 합성법을 이용한 공작기계 구조물의 동적설계)

  • 이원광
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.82-89
    • /
    • 1996
  • In this study, to choose the drilling m/c with analysis model for dynamic design of machine tool strctures, are used substucture syntheis method for reduction to degrees of freedom of dynamic model and analysis evaluation of substructures The dynamic factors of substurctures are examined by substructure synthesis method. And that dynamic design of structures for energy balancing are performed. The computer program for calculated of the dynamic and energy distribution analysis was developed. Result of numerical analysis by developed program obtained to conclusion as following. The design of machine tool structures by dynamic avoid the resonances, and are known to considered based on the energy balancing. These methods can be used effectively for the performance evaluation, design modification and improvement of dynamic performance evaluation, design modification and improvement of dynamic performance of machine tools.

  • PDF

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors (근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.527-532
    • /
    • 2005
  • In this paper, we proposed an adaptive fuzzy sliding control for unknown nonlinear systems using estimation of bounds for approximation errors. Unknown nonlinearity of a system is approximated by the fuzzy logic system with a set of IF-THEN rules whose consequence parameters are adjusted on-line according to adaptive algorithms for the purpose of controlling the output of the nonlinear system to track a desired output. Also, using assumption that the approximation errors satisfy certain bounding conditions, we proposed the estimation algorithms of approximation errors by Lyapunov synthesis methods. The overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. The good performance of the proposed adaptive fuzzy sliding mode controller is verified through computer simulations on an inverted pendulum system.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.