• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.032 seconds

Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow (Sequence to Sequence based LSTM (LSTM-s2s)모형을 이용한 댐유입량 예측에 대한 연구)

  • Han, Heechan;Choi, Changhyun;Jung, Jaewon;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.157-166
    • /
    • 2021
  • Forecasting dam inflow based on high reliability is required for efficient dam operation. In this study, deep learning technique, which is one of the data-driven methods and has been used in many fields of research, was manipulated to predict the dam inflow. The Long Short-Term Memory deep learning with Sequence-to-Sequence model (LSTM-s2s), which provides high performance in predicting time-series data, was applied for forecasting inflow of Soyang River dam. Various statistical metrics or evaluation indicators, including correlation coefficient (CC), Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), and error in peak value (PE), were used to evaluate the predictive performance of the model. The result of this study presented that the LSTM-s2s model showed high accuracy in the prediction of dam inflow and also provided good performance for runoff event based runoff prediction. It was found that the deep learning based approach could be used for efficient dam operation for water resource management during wet and dry seasons.

Efficient Object Recognition by Masking Semantic Pixel Difference Region of Vision Snapshot for Lightweight Embedded Systems (경량화된 임베디드 시스템에서 의미론적인 픽셀 분할 마스킹을 이용한 효율적인 영상 객체 인식 기법)

  • Yun, Heuijee;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.813-826
    • /
    • 2022
  • AI-based image processing technologies in various fields have been widely studied. However, the lighter the board, the more difficult it is to reduce the weight of image processing algorithm due to a lot of computation. In this paper, we propose a method using deep learning for object recognition algorithm in lightweight embedded boards. We can determine the area using a deep neural network architecture algorithm that processes semantic segmentation with a relatively small amount of computation. After masking the area, by using more accurate deep learning algorithm we could operate object detection with improved accuracy for efficient neural network (ENet) and You Only Look Once (YOLO) toward executing object recognition in real time for lightweighted embedded boards. This research is expected to be used for autonomous driving applications, which have to be much lighter and cheaper than the existing approaches used for object recognition.

Semantic Classification of DSM Using Convolutional Neural Network Based Deep Learning (합성곱 신경망 기반의 딥러닝에 의한 수치표면모델의 객체분류)

  • Lee, Dae Geon;Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.435-444
    • /
    • 2019
  • Recently, DL (Deep Learning) has been rapidly applied in various fields. In particular, classification and object recognition from images are major tasks in computer vision. Most of the DL utilizing imagery is primarily based on the CNN (Convolutional Neural Network) and improving performance of the DL model is main issue. While most CNNs are involve with images for training data, this paper aims to classify and recognize objects using DSM (Digital Surface Model), and slope and aspect information derived from the DSM instead of images. The DSM data sets used in the experiment were established by DGPF (German Society for Photogrammetry, Remote Sensing and Geoinformatics) and provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The CNN-based SegNet model, that is evaluated as having excellent efficiency and performance, was used to train the data sets. In addition, this paper proposed a scheme for training data generation efficiently from the limited number of data. The results demonstrated DSM and derived data could be feasible for semantic classification with desirable accuracy using DL.

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

The optimization of deep learning performance for embedded systems using a zero-copy technique (Zero-copy 방식을 활용한 임베디드 환경에서의 딥러닝 성능 최적화)

  • Lee, Minhak;Kang, Woochul
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.62-63
    • /
    • 2016
  • 딥러닝의 대표적 개발 환경 중 하나인 Caffe를 임베디드 시스템의 메모리 구조를 고려하여 최적화하고 실제 측정 실험으로 기존의 방식보다 처리시간과 소비 전력량의 이득이 있다는 것을 확인하였다. 구체적으로 통합 메모리를 사용하는 임베디드 시스템 환경의 특성에 적합한 zero-copy기법을 적용하여 CPU와 GPU 모두 접근이 가능하도록 메모리 영역을 맵핑하는 방식으로 메모리 복제에 따른 오버헤드를 줄였으며, GoogLeNet 네트워크 모델에 대하여 10%의 처리 속도 향상과, 36% 소비 전력 감소를 확인하였다.

A Search Category Recommendation System Using Client-based Deep Learning (클라이언트 기반 딥러닝을 이용한 검색 카테고리 추천 시스템)

  • Ahn, Cheol-Yong;Park, JiSu;Shon, Jin Gon
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.687-690
    • /
    • 2019
  • 웹 사이트 사용자들은 자신의 취향에 맞춘 웹 사이트 개인화 서비스를 원한다. 이에 따라 관련 기업들은 웹 사이트의 회원가입을 통해 사용자들의 개인 정보를 관리하여 개인화 서비스를 지원하고 있다. 하지만 기업들의 개인 정보 유출 사고와 잘못된 기업 간 공유로 개인 정보보호 관리에 어려움이 있다는 문제점이 있다. 본 논문에서는 클라이언트 기반 딥러닝(Client-based Deep Learning)과 웹 브라우저 표준 데이터베이스 IndexedDB를 사용하여 검색 카테고리 추천 시스템을 구현한다.

Wardrobe System for Blind Based On Image Processing and Deep Learning (영상처리 및 딥러닝 기반 시각장애인 옷장 시스템)

  • Lee, Yun Jik;Hwnag, Young Joon;Lee, Tae Ho;Kang, Han Byoul;Lee, Ki Young
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.962-964
    • /
    • 2019
  • 본 논문에서는 시각적 정보를 인지 할 수 없는 시각장애인들의 기본적인 의생활을 도와 줄 수 있게 의류의 시각적 정보를 영상처리 및 딥러닝을 활용하여 청각적 정보로 변환하고 음성으로 사용자에게 알려 줄 수 있는 스마트 옷장 시스템을 개발하였다.

Engineers Bridge Suicide Prevention System using Posture Recognition Deep Learning (자세 인식 딥러닝을 이용한 교량 자살 방지 시스템)

  • Park, Yebin;Choi, Dasun;Lee, Sein;Jung, Dahyun;Lim, Yangmi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.297-298
    • /
    • 2021
  • 최근 한국의 자살률은 10만 명 당 25.7명으로 높은 수치를 기록하고 있으며 한국 사회의 큰 문제로 자리 잡고 있다. 특히 한강 교량 내 투신자살 시도를 하는 경우가 매우 많다. 본 논문에서는 한강 교량 내 투신자살 시도를 예방하기 위해 자세 인식의 정확도를 향상하기 위해 딥러닝 기반의 교량에서의 자살 방식 시스템을 개발하였으며, 국내의 자살 예방률이 높아지기를 기대한다.

  • PDF

A Study on Deep learning Configuration Management System using Block chain (블록체인을 활용한 딥러닝 형상관리 시스템에 대한 연구)

  • Baeg, Su-Hwan;Lee, Jace;Shin, Young-Tae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.234-237
    • /
    • 2021
  • 최근 인공지능에대한 관심과 COVID-19의 영향으로 인공지능을 적용하려는 연구가 계속되고 있다. 인공지능 학습 방식 중 딥러닝에서는 학습 결과에 따라 가중치를 두며 지속적인 학습을 수행한다. 이때 사용하는 가중치에 따라 학습 능력이 향상되게 되지만, 과다 학습으로 인한 퇴화 현상과 잘못된 결과 도출이 되는 경우가 발생한다. 이를 해결하기 위해 본 논문에서는 문제를 해결하기 위해 비연속적 PoW 합의방식을 사용한 블록체인에 가중치와 학습 결과를 지속적으로 보관하여 형상관리를 할 수 있는 시스템을 설계하였다.