References
- Audebert, N., Le Saux, B., and Lefevre, S. (2018), Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 140, pp. 20-32. https://doi.org/10.1016/j.isprsjprs.2017.11.011
- Badrinarayanan, V., Kendall, A., and Cipolla, R. (2016), SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Bronshtein, A. (2017), Train/test split and cross validation in Python, https://towardsdatascience.com/train-test-split-andcross-validation-in-python-80b61beca4b6 (last date accessed: 17 November 2019).
- Cramer, M. (2010), The DGPF test on digital aerial camera evaluation - Overview and test design. Photogrammetrie, Fernerkundung, Geoinformation, Vol. 2, pp. 73-82. https://doi.org/10.1127/1432-8364/2010/0041
- de Brebisson, A. and Montana, G. (2015), Deep neural networks for anatomical brain segmentation, arXiv:1502.02445v2 [cs.CV], 25 Jun 2015.
- Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, J. (2017), A review on deep learning techniques applied to semantic segmentation, arXiv:1704.06857v1 [cs.CV], 22 Apr 2017.
- Goki, S. (2016), Deep Learning from Scratch, O'Reilly, Japan, 312p.
- Gulli, A. and Pal, S. (2017), Deep Learning with Keras, Packt Publishing Ltd., Birmingham, UK, 490p.
- Gupta, D. (2017), Fundamentals of deep learning - Activation functions and when to use them?, https://www.analyticsvidhya.com/blog/ 2017/10/fundamentals-deep-learning-activationfunctions-when-to-use-them/ (last date accessed: 15 August 2019).
- Kim, J., Lee, D.C., Yom, J.H., and Pack, J.K., (2004), Telecommunication modeling by integration of geophysical and geospatial information, IGARSS IEEE International Geoscience and Remote Sensing Symposium, 27 December 2004, Anchorage, USA, pp. 4105-4108.
- Kumar, S. (2017), Summary of SegNet: A deep convolutional encoder-decoder architecture for image segmentation, https://saytosid.github.io/segnet/ (last date accessed: 15 August 2018).
- LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R. Hubbard, W., and Jackel, L. (1989), Backpropagation applied to handwritten zip code recognition. Neural Computation, No. 1, Vol. 4, pp. 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- Lee, D. and Lee, D.C. (2019a), Training deep learning model with spatial information data for semantic segmentation: case of SegNet, Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 11-12 April 2019, Gwangju, Korea, pp. 78-83. (in Korean)
- Lee, D. and Lee, D.C. (2019b), Role of NGII digital map ver. 2.0 as label data for deep learning, Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 11-12 April 2019, Gwangju, Korea, pp. 160-163. (in Korean)
- Long, J., Shelhamer, E., and Darrell, T. (2015), Fully convolutional networks for semantic segmentation, Proceedings of IEEE Conference on Computer Vision and Patton Recognition, 7-12 June 2015, Boston, MA, pp. 3431-3440.
- Maltezos, E., Doulamis, A, Doulamis, N., and Ioannidis, C. (2019), Building extraction from LiDAR data applying deep convolutional neural networks, IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 1, pp. 155-159. https://doi.org/10.1109/LGRS.2018.2867736
- Maturana, D. and Scherer, S. (2015), 3D convolutional neural networks for landing zone detection from LiDAR, IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, 26-30 May 2015, pp. 3471-3478.
- McCulloch, W. and Pitts, W. (1943), A Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, Vol. 7, pp. 115-133. https://doi.org/10.1007/BF02478313
- Pang, Y., Sun, M., Jiang, X., and Li, X. (2018), Convolution in convolution for network in network, IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 5, pp. 1587-1597. https://doi.org/10.1109/tnnls.2017.2676130
- Rosenblatt, F. (1958), The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, Vol. 65, No. 6, pp. 386-408. https://doi.org/10.1037/h0042519
- Rottensteiner, F., Sohn, G., Gerke, M., and Wegner, J. (2013), ISPRS test project on urban classification and 3D building reconstruction, http://www2.isprs.org/tl_files/isprs/wg34/docs/ComplexScenes_revision_v4.pdf (last date accessed: 6 April 2018).
- Rumelhart, D., Hinton, G., and Williams, R. (1986), Learning internal representations by back-propagating errors. Nature, Vol. 323, No. 9, pp. 533-536. https://doi.org/10.1038/323533a0
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang Z., Karpathy, A., Khosla, A., Bernstein, M., and Berg, A. (2015), ImageNet large scale visual recognition challenge. International Journal of Computer Vision, Vol. 115, No. 3, pp. 211-252. https://doi.org/10.1007/s11263-015-0816-y
- Sharada, P., Mohanty, S., Hughes, D., and Salathe, M. (2016), Using deep learning for image-based plant disease detection, Frontiers in Plant Science, doi: 10.3389/fpls.2016.01419, pp. 1-10.
- Sherrah, J. (2016), Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery, arXiv:1606.02585v1[cs.CV], 8 Jun 2016.
- Simard, P., Steinkraus, D., and Platt, J. (2003), Best practices for convolutional neural networks applied to visual document analysis. Proceedings of the 7th International Conference on Document Analysis and Recognition, 3-6 August 2003, Edinburgh, Scotland, pp. 958-962.
Cited by
- 적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.635