DOI QR코드

DOI QR Code

Semantic Classification of DSM Using Convolutional Neural Network Based Deep Learning

합성곱 신경망 기반의 딥러닝에 의한 수치표면모델의 객체분류

  • Lee, Dae Geon (Geo& Lab, Geo& Co., Ltd.) ;
  • Cho, Eun Ji (Dept. of Environment, Energy & Geoinformatics, Sejong University) ;
  • Lee, Dong-Cheon (Dept. of Environment, Energy & Geoinformatics, Sejong University)
  • Received : 2019.10.30
  • Accepted : 2019.12.10
  • Published : 2019.12.31

Abstract

Recently, DL (Deep Learning) has been rapidly applied in various fields. In particular, classification and object recognition from images are major tasks in computer vision. Most of the DL utilizing imagery is primarily based on the CNN (Convolutional Neural Network) and improving performance of the DL model is main issue. While most CNNs are involve with images for training data, this paper aims to classify and recognize objects using DSM (Digital Surface Model), and slope and aspect information derived from the DSM instead of images. The DSM data sets used in the experiment were established by DGPF (German Society for Photogrammetry, Remote Sensing and Geoinformatics) and provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The CNN-based SegNet model, that is evaluated as having excellent efficiency and performance, was used to train the data sets. In addition, this paper proposed a scheme for training data generation efficiently from the limited number of data. The results demonstrated DSM and derived data could be feasible for semantic classification with desirable accuracy using DL.

최근 딥러닝(DL)은 여러 분야에서 급속도로 활용되고 있으며, 특히 영상으로부터 객체를 인식하여 분류하고 인식하기 위한 컴퓨터비전 분야에서 활발하게 연구가 진행되고 있다. 영상분야에서는 주로 합성곱 신경망(CNN)을 이용한 딥러닝 모델의 성능 향상에 주력하고 있다. 대부분의 합성곱 신경망은 영상을 학습시켜 영상분류 및 객체인식에 활용하고 있지만, 본 논문에서는 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 수치표면모델(DSM)과 이 데이터로부터 생성한 경사 및 주향 정보를 효율성과 성능이 우수하다고 평가받는 합성곱 신경망기반의 SegNet 모델에 적용하여 객체를 분류하고 분석하였다. 딥러닝은 고사양의 컴퓨터 시스템과 다량의 학습 데이터와 라벨 데이터가 필요하고, 다수의 시행착오에 의한 풍부한 경험이 요구된다. 또한 본 논문에서는 한정된 수량의 데이터로부터 효율적인 학습을 위한 데이터 생성 방법을 제시하고 수치표면모델을 분류하였다. 분석 결과 수치표면모델 데이터와 이로부터 도출한 부가적인 데이터를 딥러닝 모델에 적용해도 객체를 타당한 정확도로 분류할 수 있음을 확인하였다.

Keywords

References

  1. Audebert, N., Le Saux, B., and Lefevre, S. (2018), Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 140, pp. 20-32. https://doi.org/10.1016/j.isprsjprs.2017.11.011
  2. Badrinarayanan, V., Kendall, A., and Cipolla, R. (2016), SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
  3. Bronshtein, A. (2017), Train/test split and cross validation in Python, https://towardsdatascience.com/train-test-split-andcross-validation-in-python-80b61beca4b6 (last date accessed: 17 November 2019).
  4. Cramer, M. (2010), The DGPF test on digital aerial camera evaluation - Overview and test design. Photogrammetrie, Fernerkundung, Geoinformation, Vol. 2, pp. 73-82. https://doi.org/10.1127/1432-8364/2010/0041
  5. de Brebisson, A. and Montana, G. (2015), Deep neural networks for anatomical brain segmentation, arXiv:1502.02445v2 [cs.CV], 25 Jun 2015.
  6. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, J. (2017), A review on deep learning techniques applied to semantic segmentation, arXiv:1704.06857v1 [cs.CV], 22 Apr 2017.
  7. Goki, S. (2016), Deep Learning from Scratch, O'Reilly, Japan, 312p.
  8. Gulli, A. and Pal, S. (2017), Deep Learning with Keras, Packt Publishing Ltd., Birmingham, UK, 490p.
  9. Gupta, D. (2017), Fundamentals of deep learning - Activation functions and when to use them?, https://www.analyticsvidhya.com/blog/ 2017/10/fundamentals-deep-learning-activationfunctions-when-to-use-them/ (last date accessed: 15 August 2019).
  10. Kim, J., Lee, D.C., Yom, J.H., and Pack, J.K., (2004), Telecommunication modeling by integration of geophysical and geospatial information, IGARSS IEEE International Geoscience and Remote Sensing Symposium, 27 December 2004, Anchorage, USA, pp. 4105-4108.
  11. Kumar, S. (2017), Summary of SegNet: A deep convolutional encoder-decoder architecture for image segmentation, https://saytosid.github.io/segnet/ (last date accessed: 15 August 2018).
  12. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R. Hubbard, W., and Jackel, L. (1989), Backpropagation applied to handwritten zip code recognition. Neural Computation, No. 1, Vol. 4, pp. 541-551. https://doi.org/10.1162/neco.1989.1.4.541
  13. Lee, D. and Lee, D.C. (2019a), Training deep learning model with spatial information data for semantic segmentation: case of SegNet, Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 11-12 April 2019, Gwangju, Korea, pp. 78-83. (in Korean)
  14. Lee, D. and Lee, D.C. (2019b), Role of NGII digital map ver. 2.0 as label data for deep learning, Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 11-12 April 2019, Gwangju, Korea, pp. 160-163. (in Korean)
  15. Long, J., Shelhamer, E., and Darrell, T. (2015), Fully convolutional networks for semantic segmentation, Proceedings of IEEE Conference on Computer Vision and Patton Recognition, 7-12 June 2015, Boston, MA, pp. 3431-3440.
  16. Maltezos, E., Doulamis, A, Doulamis, N., and Ioannidis, C. (2019), Building extraction from LiDAR data applying deep convolutional neural networks, IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 1, pp. 155-159. https://doi.org/10.1109/LGRS.2018.2867736
  17. Maturana, D. and Scherer, S. (2015), 3D convolutional neural networks for landing zone detection from LiDAR, IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, 26-30 May 2015, pp. 3471-3478.
  18. McCulloch, W. and Pitts, W. (1943), A Logical Calculus of the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics, Vol. 7, pp. 115-133. https://doi.org/10.1007/BF02478313
  19. Pang, Y., Sun, M., Jiang, X., and Li, X. (2018), Convolution in convolution for network in network, IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 5, pp. 1587-1597. https://doi.org/10.1109/tnnls.2017.2676130
  20. Rosenblatt, F. (1958), The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, Vol. 65, No. 6, pp. 386-408. https://doi.org/10.1037/h0042519
  21. Rottensteiner, F., Sohn, G., Gerke, M., and Wegner, J. (2013), ISPRS test project on urban classification and 3D building reconstruction, http://www2.isprs.org/tl_files/isprs/wg34/docs/ComplexScenes_revision_v4.pdf (last date accessed: 6 April 2018).
  22. Rumelhart, D., Hinton, G., and Williams, R. (1986), Learning internal representations by back-propagating errors. Nature, Vol. 323, No. 9, pp. 533-536. https://doi.org/10.1038/323533a0
  23. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang Z., Karpathy, A., Khosla, A., Bernstein, M., and Berg, A. (2015), ImageNet large scale visual recognition challenge. International Journal of Computer Vision, Vol. 115, No. 3, pp. 211-252. https://doi.org/10.1007/s11263-015-0816-y
  24. Sharada, P., Mohanty, S., Hughes, D., and Salathe, M. (2016), Using deep learning for image-based plant disease detection, Frontiers in Plant Science, doi: 10.3389/fpls.2016.01419, pp. 1-10.
  25. Sherrah, J. (2016), Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery, arXiv:1606.02585v1[cs.CV], 8 Jun 2016.
  26. Simard, P., Steinkraus, D., and Platt, J. (2003), Best practices for convolutional neural networks applied to visual document analysis. Proceedings of the 7th International Conference on Document Analysis and Recognition, 3-6 August 2003, Edinburgh, Scotland, pp. 958-962.

Cited by

  1. 적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.635