개별 생물의 유전적 특성인 유전형 정보를 얻기 위한 개발된 기법들 중 현재 가장 많이 사용되고 있는 것은 차세대 염기서열결정을 통해 얻어진 서열을 분석하여 단일핵산염기다형현상 기반의 유전형 정보를 얻어내는GBS 방법이다. 현재 TASSEL은 GBS방법을 통해 얻어진 서열을 분석하여 시료의 유전형을 측정하기 위해 가장 많이 사용되고 있는 프로그램 중 하나이다. 그러나 TASSEL은 염기서열결정을 통해 얻어진 서열 중 일부만을 사용하는 한계가 존재한다. 우리는 이러한 한계를 극복하기 위한 효율성 개선에 대한 연구를 시작하였다. 효율성 개선을 위해 TASSEL에서 사용후 버려지는 서열의 퀄리티를 체크하여 에러율 0.1% 이하인 데이터를 확인 한 후 퀄리티가 에러율을 충족하는 부분의 서열들을 필터링 한다. 그리고 마지막으로 바코드와 제한 효소의 부분을 확인하여 길이에 따라 서열을 잘라내어 새로운 데이터 셋으로 생성하는 구조를 반복하는 알고리즘으로 구현 하였으며, 약 17% 이상의 SNP 탐지효율성 증가함을 확인 하였다. 본 논문에서는 이와 같이 유전형 연구에서 사용되지 않는 유전체 염기서열들을 사용하여 더 많은 숫자의 단일 염기 다형성을 탐지하는 방법과 구현된 프로그램을 제시한다.
웹의 확산과 더불어 웹 페이지 검색의 성능 즉, 빠른 응답시간과 확장성(scalability)은 각 웹 사이트의 절대적 평가 기준이 되었다. 웹 옹용은 일반적으로 불특정 다수를 대상으로 하기 때문에 확장성 또한 주요 성능의 척도가 된다. 이와 같은 웹 사이트 성능을 담보하기 위한 대표적 요소기술이 웹 캐슁이다. 본 논문은 웹 상에서 XML 데이터베이스 기반의 웹 응용(XML database-backed web application)을 위한 응용서버의 XML 캐쉬를 이용하여 주어진 XML 질의를 변환, 처리하는 기법과 구현에 관한 것으로 XPath의 경로표현식 중 가장 중요한 세 가지 기능인 조건을 명시하는 필터 연산자, 부모-자식 관계를 나타내는 경로 연산자(/), 그리고 조상-후손 관계를 나타내는 경로 연산자(//)를 연구 범위로 하였다. [2]에서는 조상-후손 관계를 나타내는 경로 연산자(//)가 없는 경우에 경로표현식으로 주어진 XML 질의를 캐쉬를 이용하여 변환, 처리하는 알고리즘을 제시하였는데 본 논문에서는 [2]의 알고리즘을 확장하여 경로 연간자(//)가 지원되도록 하였다. 조상-후손 경로 연산자(//)로는 정규경로 표현식(regular path expression)을 나타낼 수 있는데 이는 스키마가 불확실한 반구조적 데이터인 XML 데이터에 대한 질의 표현에 유용하다. 제시된 알고리즘에서는 DTD를 이용하여 경로 정보를 얻어 처리함으로써 주어진 질의를 캐쉬와 하부 XML 소스에 대한 질의로 변환하였다. 이 알고리즘을 바탕으로 관계 DBMS를 이용하여 구현된 시스템으로 실제 웹 상에서 성능 실험을 수행하였다. 성능 실험 결과 정규 경로 표현식을 포함하는 XML 질의에 대해서도 웹에서 캐쉬를 이용한 처리가 효율적임을 확인하였다.키는데 목적이 있다.RED에 비해 향상된 성능을 보여주었다.웍스 네트워크상의 다양한 디바이스들간의 네트워크 다양화와 분산화 기능을 얻을 수 있었고, 기존의 고가의 해외 솔루션인 Echelon사의 LonMaker 소프트웨어를 사용하지 않고도 국내의 순수 솔루션인 리눅스 기반의 LonWare 3.0 다중 바인딩 기능을 통해 저 비용으로 홈 네트워크 구성 관리 서버 시스템 개발에 대한 비용을 줄일 수 있다. 기대된다.e 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아이에서 그 주산기사망률(周産基死亡率)이 각각 가장 낮았다. 2. 사산(死産)과 초생아사망(初生兒死亡)을 구분(區分)하여 고려해 볼때 사산(死産)은 모성(母性)의 임신력(
자동차의 주요 부품인 휠 베어링에 결함이 생기면 교통사고등 문제를 발생시켜 이를 해결하기 위해 빅데이터를 수집해서 예측진단 및 관리 기술을 통한 휠 베어링의 고장 유무 및 고장 유형을 조기에 알려 주는 알고리즘과 모니터링 시스템 개발이 필요하다. 본 논문에서는 이러한 지능형 휠 허브 베어링 정비 시스템 구현을 위해 신뢰성 및 건전성에 대한 모니터링용 센서 및 예측 진단하는 알고리즘이 탑재된 임베디드 시스템을 개발하였다. 사용된 알고리즘은 휠 베어링에 설치된 가속도 센서로부터 진동 신호를 취득하고 이를 신호 처리기법, 결함주파수 분석, 건전성 특징 인자정의 등의 과정을 빅데이터 기술을 통해 고장을 예측하고 진단할 수 있다. 구현된 알고리즘은 진동 주파수 성분들은 최소화하고 휠 베어링에서 발생하는 진동 성분을 극대화할 수 있는 안정 신호 추출 알고리즘을 적용하고, 필터를 활용한 노이즈 제거에서는 인공지능 기반의 건전성 추출 알고리즘을 적용하였으며, FFT를 통한 결함 주파수를 분석하여 고장 특성인자 추출을 통한 고장을 진단하였다. 본 시스템의 성능 목표는 12,800ODR 이상으로 시험 결과를 통해 목표치를 만족하였다.
드론 라이다(Drone LiDAR)는 산지의 비탈면 정상부나 접근이 불가한 사면에 대해 근접 조사가 가능한 첨단 측량 기술로 산악지형에서 현장조사를 위한 활용이 높아지고 있다. 드론 라이다를 활용하여 지형 정보를 구축하기 위해서는 취득된 포인트 클라우드로부터 지면과 비지면 점들을 효과적으로 분리하는 전처리 과정이 필요하다. 따라서 본 연구에서는 상업용 드론에 탑재된 항공 라이다를 이용하여 산악지형의 점군 자료를 취득하고, 지면분리 기법 중 하나인 cloth simulation filtering (CSF) 알고리즘을 적용하고 정확도를 검증하였다. 알고리즘을 적용한 결과, 지면과 비지면에 대한 분리 정확도는 84.3%, kappa 계수는 0.71로 나타났고 드론 라이다 데이터를 산악지형의 산사태 현장조사에 효과적으로 활용할 수 있음을 확인하였다.
본 연구는 딥러닝 모델 중 VGG-16 및 ResNet50 모델을 활용하여 전시 정원의 유사성 평가 방법을 제시하는 것에 목적이 있다. VGG-16과 ResNet50 모델을 기반으로 전시 정원 유사성 판단을 위한 모형을 개발하였고, 이를 DRG(deep recognition of similarity in show garden design)모형이라 한다. 평가를 위한 방법으로 GAP와 피어슨 상관계수를 활용한 알고리즘을 사용하여 모형을 구축하고 1순위(Top1), 3순위(Top3), 5순위(Top5)에서 원본 이미지와 유사한 이미지를 도출하는 총 개수 비교로 유사성의 정확도를 분석하였다. DRG 모형에 활용된 이미지 데이터는 국외 쇼몽가든페스티벌 전시 정원 총 278개 작품과 국내 정원박람회인 서울정원박람회 27개 작품 및 코리아가든쇼 전시정원 이미지 17개 작품이다. DRG모형을 활용하여 동일 집단과 타 집단간의 이미지 분석을 진행하였고, 이를 기반으로 전시 정원 유사성의 가이드라인을 제시하였다. 첫째, 전체 이미지 유사성 분석은 ResNet50 모델을 기반으로 하여 데이터 증강 기법을 적용하는 것이 유사성 도출에 적합하였다. 둘째, 내부 구조와 외곽형태에 중점을 둔 이미지 분석에서는 형태에 집중하기 위한 일정한 크기의 필터(16cm × 16cm)를 적용하여 이미지를 생성하고 VGG-16 모델을 적용하여 유사성을 비교하는 방법이 효과적임을 알 수 있었다. 이때, 이미지 크기는 448 × 448 픽셀이 효과적이며, 유채색의 원본 이미지를 기본으로 설정함을 제안하였다. 이러한 연구 결과를 토대로 전시 정원 유사성 판단에 대한 정량적 방법을 제안하고, 향후 다양한 분야와의 융합 연구를 통해 정원 문화의 지속적인 발전에 기여할 것으로 기대한다.
추천시스템에서 가장 많이 활용되고 있는 협업필터링은 고객들의 과거 구매이력을 기반으로 추천하기 때문에 새로이 출시되는 상품을 추천하는 것이 근본적으로 불가능하다. 이와 같은 협업필터링의 한계점을 극복하기 위하여 많은 연구자들은 추천 대상 고객이 선호하는 상품과 유사한 속성을 가진 상품을 추천하는 내용기반 필터링을 협업필터링과 결합한 하이브리드 추천기법을 제시하였다. 그러나 하이브리드 추천기법은 음악, 영화 등 속성 추출이 용이한 일부 상품의 추천에만 활용될 수 있다는 한계가 있다. 따라서 상품 유형에 관계없이 고객에게 신상품을 효과적으로 추천할 수 있는 새로운 접근방법이 제시될 필요가 있다. 본 연구에서는 사회연결망분석에서 관계 및 구조적 특성을 분석하기 위해 널리 활용 되고 있는 중심성 개념을 적용하여 상품간의 구매 관계를 파악한 후 이를 기반으로 신상품을 구매할 가능성이 높은 고객을 찾아 신상품을 추천방법을 제안한다. 추천 프로세스는 구매 유사도 분석, 상품 네트워크 구성, 중심성 분석, 신상품 추천 등 네 단계 절차로 나뉘어진다. 제시한 추천방법의 성능을 평가하기 위하여 국내 유명 백화점 중의 하나인 H백화점의 구매 데이터를 사용하여 실험하였다.
화상병이란 erwinia amylovora라는 강한 전염성을 보유하고 있어 감염 시 1년 내에 과수를 고사시키며 그 중심으로 반경 500m이내에 과수 재배를 불가능하게 만드는 세균성 바이러스이다. 이 화상병은 과수의 잎과 가지를 진한 갈색 또는 검은색으로 변색시키기 때문에 분광학적으로 검출이 가능하다고 판단되며 이는 다중분광센서를 탑재한 무인기를 이용하는 것이 효율적이다. 그러나 다중분광센서는 적은 중심 파장과 함께 넓은 반치전폭(FWHM)을 가지고 있어 화상병에 가장 민감하게 반응하는 파장 대역을 파악하기 어렵다. 그렇기 때문에, 본 논문에서는 화상병에 감염된 잎과 가지와 비감염된 잎과 가지의 초분광 이미지를 5 nm FWHM으로 취득한 후 각각 10 nm, 25 nm, 50 nm와 80 nm FWHM로 평준화한 후 샘플을 7:3, 5:5와 3:7의 비율로 훈련데이터와 검증데이터로 나누어 의사결정트리 기법으로 최적의 파장을 선정하고 overall accuracy (OA)와 kappa coefficient (KC)를 이용한 분류 정확도 평가를 통해 배나무 화상병 검출가능성을 확인하였다. 화상병에 감염 및 비감염된 잎과 가지의 초분광 반사율을 비교한 결과, green, red edge 및 NIR 영역에서 차이가 두드러지게 나타났으며 첫 번째 분류 노드로 선택된 파장 영역은 대체로 750 nm와 800 nm였다. 잎과 가지 영역의 영상데이터를 의사결정트리 기법을 이용하여 분류정확도를 종합적으로 비교한 결과, 50nm FWHM 인 4개 대역(450, 650, 750, 950nm)은 10nm FWHM인 8개 대역(440, 580, 660, 680, 680, 710, 730, 740nm)의 분류 정확도 차이가 OA에서 1.8%와 KC에서 4.1%로 나타나 더 낮은 비용의 밴드패스필터인 50nm FWHM을 이용하는 것이 더 유리하다고 판단된다. 또한 기존의 50nm FWHM 파장대역들에 25nm FWHM파장대역들(550, 800nm)을 추가하는 것을 통해 화상병 검출뿐만 아니라 농업에서 다양한 역할을 수행할 수 있는 다중분광센서를 개발할 수 있다고 판단된다.
석유 및 정유관련 산업에서 다중상(multi-phase flow) 유체의 배관 내 흐름은 일반적인 현상의 하나이다. 그러나 각각의 상에 대한 정확한 유량측정은 항상 정확한 결과획득을 얻는데 장애의 근원으로 작용하였다. 일반 상업용 유량계는 일정 이상의 기포가 포함된 유체 흐름의 경우 유량계측에 상당한 오차를 유발한다. 본 연구에서는 ${\gamma}$-ray attenuation 기법을 이용하여 clamp-on 타입으로 배관 외부에서 다중상 유체흐름의 유량 측정을 수행하였다. 사용된 밀봉 감마선원으로는 $^{137}Cs$ 20 mCi와 17 mCi 두 개의 동위원소를 사용하였으며, 감마선 검출기로는 $2"{\times}2"$ NaI(Tl) 섬광계수관을 이용하였다. 방사선 검출기로부터 데이터를 수집하고 각각의 데이터에 대해 푸리에 변환과 필터링을 통해 노이즈를 최소화하였다. 복원된 신호에 대해 상호상관함수(cross correlation function)를 적용하여 두 검출기 사이의 통과시간(transit time)을 측정함으로써 유량을 산정하였다. 배관 내 기포함량 측정을 통해 유량을 보정해줌으로써 측정유량의 정확도를 높였다. 두 선원간의 거리가 4D(D; inner diameter) 그리고 본 실험의 측정조건(N/S: $0.12{\sim}0.15$, sampling time ${\Delta}\;t$: 4msec) 하에서 기포량(단면적 대비 $6.1\;%{\sim}9.2\;%$) 보정을 통해 산정된 유량은 계측오차가 실제 평균유량 대비 1.7 % 이하인 정확도를 보였다. 또한 두 밀봉 감마선원 간의 거리가 가까울수록 통과시간 측정에 정확도가 향상되므로 보다 정확한 유량측정이 가능하였다. 본 연구를 통해 다중상 혼합유체의 유량을 밀봉감마선원과 상호상관 기법으로 이용하여 계측할 수 있음을 확인하였다. 방사성동위원소의 선택 및 계측시스템의 최적화 조건 등에 대한 추가연구가 수행된다면 석유화학 산업과 같은 장치산업의 유지관리 측면에 경제적으로 크게 기여할 수 있을 것으로 판단된다.
목적 필터보정역투영(filtered back projection; 이하 FBP)법과 적절한 커널로 재구성된 소아 저선량 안면 컴퓨터단층촬영(이하 CT)의 시행 가능성을 평가하고자 한다. 대상과 방법 응급실에서 안면 CT를 촬영한 10세 이하 환자의 임상 및 영상 데이터를 후향적으로 검토하였다. 환자들을 두 그룹으로 나누었다: 고정된 80 kVp와 자동관전류변조기법을 사용하는 저선량 CT (low-dose CT, 그룹 A, n = 73), 고정된 120 kVp와 자동관전류변조기법을 사용하는 표준 선량 CT (standard-dose CT, 그룹 B, n = 40). 모든 영상은 FBP로 재구성되었다: 그룹 A는 뼈와 연조직 커널을, 그룹 B는 뼈 커널을 이용하였다. 두 그룹의 영상 잡음, 신호대잡음비(signal-to-noise ratio; 이하 SNR), 그리고 대조대잡음비(contrast-to-noise ratio; 이하 CNR)를 비교하였다. 두 명의 영상의학과 의사가 뼈와 연조직의 영상 품질에 대해 주관적으로 점수화하였다. 용적 CT 선량지수(CT dose index volume)와 선량길이곱(dose length product)을 기록하였다. 결과 영상 잡음은 그룹 A가 그룹 B보다 높았다(p < 0.001). 연조직 커널을 사용한 그룹 A 영상에서 가장 높은 SNR과 CNR을 보였다(p < 0.001). 뼈의 정성적 평가에서 뼈 커널 영상들을 비교하면 그룹 A가 그룹 B보다 비슷하거나 높은 점수를 보였다. 연조직의 정성적 평가에서 연조직 커널을 이용한 그룹 A와 뼈 커널에 연조직 창 설정을 이용한 그룹 B 사이에는 통계적으로 유의한 차이가 없었다(p > 0.05). 그룹 A는 그룹 B에 비해 방사선 선량이 76.9% 감소했다(3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy, p < 0.001). 결론 연조직 커널 영상을 FBP로 재구성된 전통적인 CT에 추가함으로써 영상 품질을 유지하면서 소아 저선량 안면 CT 프로토콜을 사용할 수 있다.
전자상거래 시장이 빠르게 성장하면서 다양한 유형의 제품이 출시되고 있으며, 이로 인해 사용자들은 구매 의사결정과정에 많은 시간이 소요되는 정보 과부하 문제에 직면하고 있다. 따라서 사용자에게 맞춤형 제품 및 서비스를 제공해줄 수 있는 개인화 추천 서비스의 중요성이 대두되고 있다. 대표적으로 Netflix, Amazon, Google 등 세계적 기업은 개인화 추천 서비스를 도입하여 사용자의 구매 의사결정을 지원하고 있다. 이에 따라 사용자의 정보탐색 비용이 감소하는 효과가 나타났고, 기업의 매출 상승에도 긍정적인 영향을 끼치고 있다. 기존 개인화 추천 서비스 관련 연구에서 주로 사용된 협업필터링(Collaborative Filtering, CF) 기법은 정량화된 정보를 활용하여 사용자의 선호도를 예측하였다. 그러나 정량화된 정보만을 활용하면 사용자의 구매 의도는 고려하지 못하므로 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 이와 같은 기존 연구의 문제점을 개선하기 위해 최근에는 사용자가 작성한 리뷰를 활용한 개인화 추천 서비스 연구가 활발히 진행되고 있다. 그러나 리뷰에는 광고성 내용, 거짓 후기, 의미를 전혀 파악할 수 없거나 제품과 관련 없는 내용 등 구매의사결정을 저해하는 요소들이 포함되어 있다. 이러한 요소들이 포함된 리뷰를 활용하여 추천 서비스를 제공하게 되면, 추천 성능이 저하되는 문제가 발생할 수 있다. 따라서 본 연구에서는 이러한 문제점을 개선하기 위해 Convolutional Neural Network(CNN) 기반 리뷰 유용성 점수 예측을 통한 새로운 추천 방법론을 제안하였다. 본 연구에서 제안하는 유용한 리뷰를 포함하는 방법론과 기존 모든 선호도 평점을 고려하는 추천 방법론을 비교한 결과, 본 연구에서 제안한 방법론이 더 우수한 예측 성능을 나타내고 있음을 확인할 수 있었다. 또한 본 연구의 결과는 리뷰 유용성에 대한 정보를 개인화 추천 서비스에 반영하면 전통적인 CF의 성능을 향상할 수 있음을 시사한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.