Abstract
Collaborative Filtering is one of the most used recommender systems. However, basically it cannot be used to recommend new products to customers because it finds products only based on the purchasing history of each customer. In order to cope with this shortcoming, many researchers have proposed the hybrid recommender system, which is a combination of collaborative filtering and content-based filtering. Content-based filtering recommends the products whose attributes are similar to those of the products that the target customers prefer. However, the hybrid method is used only for the limited categories of products such as music and movie, which are the products whose attributes are easily extracted. Therefore it is essential to find a more effective approach to recommend to customers new products in any category. In this study, we propose a new recommendation method which applies centrality concept widely used to analyze the relational and structural characteristics in social network analysis. The new products are recommended to the customers who are highly likely to buy the products, based on the analysis of the relationships among products by using centrality. The recommendation process consists of following four steps; purchase similarity analysis, product network construction, centrality analysis, and new product recommendation. In order to evaluate the performance of this proposed method, sales data from H department store, one of the well.known department stores in Korea, is used.
추천시스템에서 가장 많이 활용되고 있는 협업필터링은 고객들의 과거 구매이력을 기반으로 추천하기 때문에 새로이 출시되는 상품을 추천하는 것이 근본적으로 불가능하다. 이와 같은 협업필터링의 한계점을 극복하기 위하여 많은 연구자들은 추천 대상 고객이 선호하는 상품과 유사한 속성을 가진 상품을 추천하는 내용기반 필터링을 협업필터링과 결합한 하이브리드 추천기법을 제시하였다. 그러나 하이브리드 추천기법은 음악, 영화 등 속성 추출이 용이한 일부 상품의 추천에만 활용될 수 있다는 한계가 있다. 따라서 상품 유형에 관계없이 고객에게 신상품을 효과적으로 추천할 수 있는 새로운 접근방법이 제시될 필요가 있다. 본 연구에서는 사회연결망분석에서 관계 및 구조적 특성을 분석하기 위해 널리 활용 되고 있는 중심성 개념을 적용하여 상품간의 구매 관계를 파악한 후 이를 기반으로 신상품을 구매할 가능성이 높은 고객을 찾아 신상품을 추천방법을 제안한다. 추천 프로세스는 구매 유사도 분석, 상품 네트워크 구성, 중심성 분석, 신상품 추천 등 네 단계 절차로 나뉘어진다. 제시한 추천방법의 성능을 평가하기 위하여 국내 유명 백화점 중의 하나인 H백화점의 구매 데이터를 사용하여 실험하였다.