• Title/Summary/Keyword: 내부선량평가

Search Result 161, Processing Time 0.019 seconds

구동 팬톰 시스템을 통한 내부 장기 움직임의 선량 평가

  • Kim, Jae-Gyun;Kim, Yun-Jong;Lee, Dong-Han;Lee, Dong-Hun;Kim, Mi-Suk;Jo, Cheol-Gu;Ryu, Seong-Ryeol;Yang, Gwang-Mo;Yu, Hyeong-Jun;Ji, Yeong-Hun
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.64-67
    • /
    • 2005
  • 본 연구의 목적은 호흡 운동에 영향을 받는 내부 장기의 움직임을 정량적으로 분석하고, 그 결과를 토대로 움직이는 내부 장기의 선량 분포를 측정하고 평가하는 것이다. 그리고 이전에 보고된 논문에서 개발된 움직임 감소 장치의 사용 유무에 따른 내부 장기의 선량 분포 또한 분석하는 것이다. 이를 위하여 1차원적으로 움직이는 구동 팬톰 시스템을 개발하였고, 6MV X-ray에서 Kodak X-omat V 필름을 사용하여 움직이는 내부 장기의 선량분포를 실험적으로 측정하였다. 이 결과로부터 호흡 운동으로 인한 움직이는 내부 장기 및 종양에 조사되는 선량의 부정확도를 평가할 수 있었고, 움직임 감소 장치를 사용했을 때 선량의 부정확도가 감소함을 확인할 수 있었다.

  • PDF

Intercomparison Exercise on Internal Dose Assessment in Korea (국내 내부피폭방사선량 평가 상호비교)

  • Lee, Jong-Il;Kim, Jang-Lyul;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.64-70
    • /
    • 2011
  • The intercomparison exercise on internal dose assessment has been carried out for the purpose of the evaluation for harmonization of internal dosimetry between the nuclear-related institutes in Korea. The exercises of 9 items on internal dose assessment have been developed for the unknown internal dosimetric parameters such as the intake pathway, absorption type, AMAD, and intake time of a radionuclide. Solutions to these exercises were reported by 7 participants from 5 institutes. The range of the ratio between the individual values and the geometric mean value of the evaluated doses for the exercises was $5.75{\times}10^{-4}$ ~ 9.81. But without the extreme partial solution, the range of the ratio was 0.216 ~ 3.12.

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

Development of a Monte Carlo Simulation Code (CALEFF) for Calibrating Thyroid Internal Dose Measurement and Detection Efficiency Calculation (갑상선 내부피폭선량 측정치 보정을 위한 몬테카를로 모의실험 코드 (CALEFF) 개발 및 검출효율 계산)

  • Ahn, Ki-Soo;Cho1, Hyo-Sung
    • Journal of radiological science and technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • According to the Para. 5 of Art 2 of the Korean Nuclear Safety Regulations, which was revised in 1999, internal dose assessment as well as external one should be performed by law for employees at a nuclear power plant from 2003, and their estimate errors should also be within 50%. Thus, more accurate internal dosimetry becomes important. Corresponding to such regulation revision, we are developing a more accurate thyroid-uptake internal dosimetric system and have developed a Monte Carlo simulation code, the so-called CALEFF, to calculate the detection efficiency of the dosimetric system. In this paper, we calculated detection efficiencies with various test conditions by using the CALEFF code and discussed their characteristics. We may use the detection efficiency calculated by the code in calibrating the thyroid internal dose from measured data.

  • PDF

Trends and Issues in Metabolism and Dosimetry for Tritium Intake (삼중수소 피폭방사선량 평가의 경향과 이슈에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Tritium is the one of the most important radionuclide for workers in nuclear power plants (NPPs) and the public, from the dosimetric point of view. Humans are likely to have internal radiation exposure by tritium inhalation. Radiation exposure by tritium accounts for approximately 7% and 60~90% of the total radiation exposure of NPP workers and the public during normal operation, respectively. Thus, many researches have been conducted to estimate the internal dose by tritium precisely in the world. In terms of tritium dosimetry, this paper provides the current status of research for tritium metabolism and dosimetry.

Preliminary Study on the Internal Dosimetry Program for Carbon-14 at Korean CANDU Reactors (중수로원전에서 발생하는 $^{14}C$에 대한 내부피폭 선량평가 프로그램에 관한 예비 조사)

  • Kong T.Y.;Kim H.C.;Park G.;Hang D.W.;Lee G.J.;Lee S.K.;Park S.C.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-320
    • /
    • 2005
  • More strict radioactive regulations are applied to Korean nuclear power plants (NPPs) since ICRP-60 recommendation for radiation protection and has been enforced since 2003. In particular. carbon-14 and tritium concentrations are significantly higher at CANDU reactors compared to PWR reactors and this increases the risk of internal radiation exposure to workers at CANDU NPPs. Thus, it is necessary to estimate the exact amount of internal radiation exposure to workers fur radiological protection at CANDU reactors. In this paper, the current dosimetry method for carbon-14 is analyzed for the establishment of internal dosimetry for carbon-14 at domestic NPPs.

  • PDF