This study investigated instructional methods for fractional division emphasizing algebraic thinking with sixth graders. Specifically, instructional elements for fractional division emphasizing algebraic thinking were derived from literature reviews, and the fractional division instruction was reorganized on the basis of key elements. The instructional elements were as follows: (a) exploring the relationship between a dividend and a divisor; (b) generalizing and representing solution methods; and (c) justifying solution methods. The instruction was analyzed in terms of how the key elements were implemented in the classroom. This paper focused on the fractional division instruction with problem contexts to calculate the quantity of a dividend corresponding to the divisor 1. The students in the study could explore the relationship between the two quantities that make the divisor 1 with different problem contexts: partitive division, determination of a unit rate, and inverse of multiplication. They also could generalize, represent, and justify the solution methods of dividing the dividend by the numerator of the divisor and multiplying it by the denominator. However, some students who did not explore the relationship between the two quantities and used only the algorithm of fraction division had difficulties in generalizing, representing, and justifying the solution methods. This study would provide detailed and substantive understandings in implementing the fractional division instruction emphasizing algebraic thinking and help promote the follow-up studies related to the instruction of fractional operations emphasizing algebraic thinking.
Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.
The purpose of this study is to explore visual models for deriving the fractional division algorithm, to see how students understand this integrated model, the rectangular partition model, when taught in elementary school classrooms, and how they structure relationships between fractional division situations. The conclusions obtained through this study are as follows. First, in order to remind the reason for multiplying the reciprocal of the divisor or the meaning of the reciprocal, it is necessary to explain the calculation process by interpreting the fraction division formula as the context of a measurement division or the context of the determination of a unit rate. Second, the rectangular partition model can complement the detour or inappropriate parts that appear in the existing model when interpreting the fraction division formula as the context of a measurement division, and can be said to be an appropriate model for deriving the standard algorithm from the problem of the context of the inverse of a Cartesian product. Third, in the context the inverse of a Cartesian product, the rectangular partition model can naturally reveal the calculation process in the context of a measurement division and the context of the determination of a unit rate, and can show why one division formula can have two interpretations, so it can be used as an integrated model.
The contents of fraction division in textbooks are important because there were changes in situations and problem solving methods in textbooks according to the revision of the curriculum and the contents of textbooks affect students' learning directly. So, this study analyzed the achievement standards of the curriculum and formula types and situations, and the introduction process of non-standard and standard algorithms presented in Korean mathematics textbooks. The results are follows: there was little difference in the achievement standards of the curriculum, but there was a difference in the arrangement of contents by grades in textbooks. There was a difference in the types of formula according to textbooks. And the situation became more diverse; recent textbooks have changed to the direction of using the non-standard and the standard algorithm in parallel. In conclusion, I proposed categorizing rather than splitting the types of fraction division, the connection of non-standard and standard algorithm, and the need to prepare methods to pursue generalization and justification according to the common characteristics in the process of introducing standard algorithm.
Journal of Elementary Mathematics Education in Korea
/
v.20
no.3
/
pp.457-477
/
2016
The purpose of this study is to analyze and diagnose the type of errors indicated by the students in the process of calculation of the fractional multiplication and division, and to propose teaching methods, to effectively correct errors. The results obtained through this study are as follows. First, based on the results of the preliminary examination, 6 types of errors of the fractional multiplication and division has been organized. In particular, the most frequent types of errors are algorithm errors. Therefore, a teacher should explain the meaning and concept of fractional multiplication and division. Second, 4 prescription methods are proposed for understanding fractional multiplication and division. Third, according to the results of this study, it was effective to diagnose underachievers' error types and give corrective lesson according to the cause of the error types. Throughout the study, it's concluded that it is necessary to analyze and diagnose the error types of fractional multiplication and division, and then a teacher can correct error types by 4 proposed prescription methods. Also, 5 students showed interest while learning, and participated actively.
This paper investigated the conceptual schemes in which four children constructed a strategy representing the situation as a figure and partitioning it related to the work which they quantify the result of partitioning to various types of fractions when an equal sharing situation was given to them in contextual or an abstract symbolic form of division. Also, the paper researched how the relationship of factors and multiples between the numerator and denominator, or between the divisor and dividend affected the construction. The children's partitioning strategies were developed such as: repeated halving stage ${\rightarrow}$ consuming all quantity stage ${\rightarrow}$ whole number objects leftover stage ${\rightarrow}$ singleton object analysis/multiple objects analysis ${\rightarrow}$ direct mapping stage. When children connected the singleton object analysis with multiple object analysis, they finally became able to conceptualize division as fractions and fractions as division.
This study examined the relationship between preservice teachers' mathematical understanding and problem posing in fractions multiplication and division. To this purpose, 41 preservice teachers performed visual representation and problem posing tasks for fraction multiplication and division, measured their mathematical understanding and problem posing ability, and examined the relationship between mathematical understanding and problem posing ability using cross-tabulation analysis. As a result, most of the preservice teachers showed conceptual understanding of fraction multiplication and division, and five types of difficulties appeared. In problem posing, most of the preservice teachers failed to pose a math problem that could be solved, and four types of difficulties appeared. As a result of cross-tabulation analysis, the degree of mathematical understanding was related to the ability to pose problems. Based on these results, implications for preservice teachers' mathematical understanding and problem posing were suggested.
Because of the various concepts and meanings of fractions and the difficulty of learning, studies to improve the teaching methods of fraction have been carried out. Particularly, because there are various methods of teaching depending on the type of fractions or the models or methods used for problem solving in fraction operations, many researches have been implemented. In this study, I analyzed the fractional operations of CCSSM-CA and its U.S. textbooks. It was CCSSM-CA revised and presented in California and the textbooks of Houghton Mifflin Harcourt Publishing Co., which reflect the content and direction of CCSSM-CA. As a result of the analysis, although the grades presented in CCSSM-CA and Korean textbooks were consistent in the addition and subtraction of fractions, there are the features of expressing fractions by the sum of fractions with the same denominator or unit fraction and the evaluation of the appropriateness of the answer. In the multiplication and division of fractions, there is a difference in the presentation according to the grades. There are the features of the comparison the results of products based on the number of factor, presenting the division including the unit fractions at first, and suggesting the solving of division problems using various ways.
분수의 개념은 초등학교 수학에서 학생들이 이해하기에 가장 어려운 부분 중의 하나이다. 더욱이, 분수의 나눗셈은 이를 가르치는 교사들이나 배우는 학생들 모두에게 다루기가 쉽지 않은 과제로 남아 있다. 본고에서는 한국과 미국의 교과서에서 (분수)${\div}$(분수)를 어떻게 도입하며 전개하고 있는지 살펴보고, 이에 대한 학생들의 이해를 돕기 위한 제안을 하고자 한다.
This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.