• Title/Summary/Keyword: 나노셀룰로오스

Search Result 84, Processing Time 0.042 seconds

Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs) (셀룰로오스 나노크리스탈 강화 셀룰로오스 아세테이트 나노복합소재 제조 및 특성)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.565-576
    • /
    • 2018
  • Cellulose acetate (CA) has been widely utilized for composite materials due to its high transparency and thermal resistance. In this study, CNCs (cellulose nanocrystals) were reinforced in CA nanocomposites for fortifying mechanical properties of the composites. In addition, CA nanocomposites reinforced with CNCs were manufactured by extrusion/injection processes applied with CNC-predispersion method for achieving a high dispersion level of CNCs in the CA matrix. According to the analysis of mechanical properties, the CA nanocomposite with 3 wt% CNCs has the highest tensile and flexural strengths due to the reinforcing effect of CNC nanoparticles. Thermogravimetric analysis (TGA) showed that the addition of acid hydrolyzed CNCs slightly lowered the initial pyrolysis temperature of CA nanocomposite.

Nanocomposite of Ethyl Cellulose Using Environment-Friendly Plasticizer (친환경 가소제를 첨가한 에틸 셀룰로오스 나노복합체)

  • Choi Sung Heon;Cho Mi Suk;Kim Dukjoon;Kim Ji-Heung;Lee Dong Hyun;Shim Sang Joon;Nam Jae-Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.399-402
    • /
    • 2005
  • In this study, ethyl cellulose (EC)/montmorilloniote(MMT) nanocomposite films plasticized with environmental-friendly plasticizer (BET, EBN, ESO) were prepared by melt process using Hakke mixer. The $T_g$ of plasticized EC films decreased from 122 to $71^{circ}C$ with the increase in the BET content up to 30 $wt\%$. The addition of 10 $wt\%$ epoxidized soybean oil (ESO) as the second plasticizer cause the further drop of $T_g$ from 81 to $61^{circ}C$. The plasticizer-effect of BET was better than that of EBN. When the plasticizer was added into the EC films, the mechanical properties of EC films was decreased, however the addition of monotmorillonite (MMT) into the EC films or the ring opening reaction of ESO plasticizer cause enhancement of mechanical properties.

Preparation of Cellulose Nanofibrils and Their Applications: High Strength Nanopapers and Polymer Composite Films (셀룰로오스 나노섬유의 제조 및 응용: 고강도 나노종이와 고분자복합필름)

  • Lee, Sun-Young;Chun, Sang-Jin;Doh, Geum-Hyun;Lee, Soo;Kim, Byung-Hoon;Min, Kyung-Seon;Kim, Seung-Chan;Huh, Yoon-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.197-205
    • /
    • 2011
  • Cellulose nanofibrils (CNF) with 50~100 nm diameter were manufactured from micro-size cellulose by an application of a high-pressure homogenizer at 1,400 bar. High strength nanopapers were prepared over a filter paper by a vacuum filtration from CNF suspension. After reinforcing and dispersing CNF suspension, hydroxypropyl cellulose (HPC) and polyvinyl alcohol (PVA)-based composites were tailored by solvent- and film-casting methods, respectively. After 2, 4, 6 and 8 passes through high-pressure homogenizer, the tensile strength of the nanopapers were extremely high and increased linearly depending upon the pass number. Chemical modification of 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) on the nanopapers significantly increased the mechanical strength and water repellency. The reinforcement of 1, 3, and 5 wt% CNF to HPC and PVA resins also improved the mechanical properties of the both composites.

Effects of cellulose nanocrystals and graphene oxide on hydration heat of cement paste (셀룰로오스 나노크리스탈과 산화그래핀이 시멘트 페이스트의 수화열에 미치는 영향)

  • Lee, Yun-Kyung;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.189-190
    • /
    • 2023
  • In this study, the compressive strength and hydration heat of cement paste mixed with cellulose nanocrystal(CNC) and graphene oxide (GO) were evaluated. The difference was compared by mixing 0.1 vol.% ~0.4 vol.% of CNC and 0.05 wt.% ~ 0.1 wt.% of GO in a cement paste with a water cement ratio of 0.3. As a result, it was confirmed that the compressive strength increased as CNC and GO were mixed respectively, and then the compressive strength decreased when the appropriate mixing rate was exceeded. In the hydration heat measurement, there was no significant difference when only CNC was mixed, but it was confirmed that the hydration heat decreased as the amount of CNC mixing increased when used in combination with GO.

  • PDF

Bacterial Cellulose Membrane for Wastewater Treatment: A Review (폐수 처리를 위한 박테리아 셀룰로오스 막: 리뷰)

  • Jang, Eun Jo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.384-392
    • /
    • 2021
  • Growing pollution due to industrialization leads to difficulties in survival of mankind. Generation of clean water from wastewater by membrane separation process is emerging cost efficient technology. Membrane prepared from renewable resources are in lots of demand to reduce burden on synthetic polymers which is one of the source of environmental pollution. Bacterial cellulose (BC) is very pure and distinct form of cellulose nanofibrils (CNF). Nanopapers prepared from CNF are used ad ultrafiltration (UF) and nanofiltration (NF) membrane for different applications. High crystallinity of BC gives rise to excellent mechanical property, an essential criterion for wastewater treatment membrane. In this review, BC based membrane for application in dye, oil, heavy metal and chemical removal from wastewater is discussed.