DOI QR코드

DOI QR Code

Preparation and Characteristics of Cellulose Acetate Based Nanocomposites Reinforced with Cellulose Nanocrystals (CNCs)

셀룰로오스 나노크리스탈 강화 셀룰로오스 아세테이트 나노복합소재 제조 및 특성

  • Gwon, Jae-Gyoung (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science) ;
  • Lee, Dan-Bee (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science) ;
  • Cho, Hye-Jung (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science) ;
  • Lee, Sun-Young (National Forestry Research Institute, Forest Products Department, National Institute of Forest Science)
  • Received : 2018.08.17
  • Accepted : 2018.09.08
  • Published : 2018.09.25

Abstract

Cellulose acetate (CA) has been widely utilized for composite materials due to its high transparency and thermal resistance. In this study, CNCs (cellulose nanocrystals) were reinforced in CA nanocomposites for fortifying mechanical properties of the composites. In addition, CA nanocomposites reinforced with CNCs were manufactured by extrusion/injection processes applied with CNC-predispersion method for achieving a high dispersion level of CNCs in the CA matrix. According to the analysis of mechanical properties, the CA nanocomposite with 3 wt% CNCs has the highest tensile and flexural strengths due to the reinforcing effect of CNC nanoparticles. Thermogravimetric analysis (TGA) showed that the addition of acid hydrolyzed CNCs slightly lowered the initial pyrolysis temperature of CA nanocomposite.

셀룰로오스 아세테이트(cellulose acetate, CA)는 높은 투명도와 열 저항성을 갖고 있어 복합소재 개발에 많이 응용되고 있다. 본 연구에서는 CA 복합재의 기계적 강도 개선을 위해 셀룰로오스 나노크리스탈 (cellulose nanocrystals, CNCs)을 강화제로 첨가하였다. CA 수지 내부에 CNCs의 고른 분산을 위해 선 분산(predispersion)법 적용 후, 압출 및 사출하는 제조 방식으로 CA 복합재를 제조하였다. 기계적 특성 분석 결과, CNCs를 3 wt% 첨가하였을 때 강화효과(reinforcing effect)로 인해 최대 인장강도와 굴곡강도 값을 보임을 확인하였다. 열중량 분석법을 이용한 열분해 거동 분석을 통해 황산 처리된 CNCs의 첨가는 CA 복합소재의 열안정성을 약간 감소시키는 결과를 얻었다.

Keywords

References

  1. Lee, P.W., Eom, Y.G., Chung, Y.J. 1988. The distribution and type of crystals in woods of Ginkgo Max. Journal of the Korean Wood Science and Technology 16(3): 1-4.
  2. Azizi Samir, M. A. S., Alloin, F., Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626. https://doi.org/10.1021/bm0493685
  3. Candido, R. G., Godoy, G. G., Goncalves, A. R. 2017. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate polymers 167: 280-289. https://doi.org/10.1016/j.carbpol.2017.03.057
  4. Chun, S. J., Choi, E. S., Lee, E. H., Kim, J. H., Lee, S. Y., Lee, S. Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry 22(32): 16618-16626. https://doi.org/10.1039/c2jm32415f
  5. Claro, P. I. C., Neto, A. R. S., Bibbo, A. C. C., Mattoso, L. H. C., Bastos, M. S. R.,, Marconcini, J. M. 2016. Biodegradable blends with potential use in packaging: a comparison of PLA/chitosan and PLA/cellulose acetate films. Journal of Polymers and the Environment 24(4): 363-371. https://doi.org/10.1007/s10924-016-0785-4
  6. Dong, H., Strawhecker, K. E., Snyder, J. F., Orlicki, J. A., Reiner, R. S., Rudie, A. W. 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers 87(4): 2488-2495. https://doi.org/10.1016/j.carbpol.2011.11.015
  7. Dufresne, A. 2008. Polysaccharide nano crystal reinforced nanocomposites. Canadian Journal of Chemistry 86(6): 484-494. https://doi.org/10.1139/v07-152
  8. Dumitriu, C., Voicu, S. I., Muhulet, A., Nechifor, G., Popescu, S., Ungureanu, C., ... Pirvu, C. 2018. Production and characterization of cellulose acetate/titanium dioxide nanotubes membrane fraxiparinized through polydopamine for clinical applications. Carbohydrate polymers 181: 215-223. https://doi.org/10.1016/j.carbpol.2017.10.082
  9. Gutierrez, M. C., De Paoli, M. A., Felisberti, M. I. 2012. Biocomposites based on cellulose acetate and short curaua fibers: Effect of plasticizers and chemical treatments of the fibers. Composites Part A: Applied Science and Manufacturing 43(8): 1338-1346. https://doi.org/10.1016/j.compositesa.2012.03.006
  10. Gwon, J. G., Cho, H. J., Lee, D., Choi, D. H., Lee, S., Wu, Q., Lee, S. Y. 2018. Physicochemical and mechanical properties of polypropylene-cellulose nanocrystal nanocomposites: Effects of manufacturing process and chemical grafting. BioResources 13(1): 1619-1636.
  11. Gwon, J. G., Cho, H. J., Chun, S. J., Lee, S., Wu, Q., Li, M. C., Lee, S. Y. 2016. Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly (lactic acid) as a base matrix. RSC Advances 6(77): 73879-73886. https://doi.org/10.1039/C6RA10993D
  12. Gwon, J. G., Cho, H. J., Chun, S. J., Lee, S., Wu, Q., Lee, S. Y. 2016. Physiochemical, optical and mechanical properties of poly (lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Advances 6(12): 9438-9445. https://doi.org/10.1039/C5RA26337A
  13. Jo, Y. J., Cho, H. J., Chun, S. J., Lee, S. Y. 2015. Mechanical and thermal properties of hydroxypropyl cellulose/TEMPO-Oxidized cellulose nanofibril composite films. Journal of Korean Wood Science Technology 43(6): 740-745. https://doi.org/10.5658/WOOD.2015.43.6.740
  14. Korea Textile Development Instute, Textile information team. 2012. Development trend of thermoplastic cellulose fibers
  15. Kurokawa, N., Kimura, S., Hotta, A. 2018. Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. Journal of Applied Polymer Science 135(24): 45429. https://doi.org/10.1002/app.45429
  16. Leite, L. S. F., Battirola, L. C., da Silva, L. C. E., Goncalves, M. D. C. 2016. Morphological investigation of cellulose acetate/cellulose nanocrystal composites obtained by melt extrusion. Journal of Applied Polymer Science 133(44).
  17. Liu, C., Li, X., Liu, T., Liu, Z., Li, N., Zhang, Y., ... Feng, X. 2016. Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. Journal of Membrane Science 512: 1-12. https://doi.org/10.1016/j.memsci.2016.03.062
  18. Ljungberg, N., Cavaille, J. Y., Heux, L. 2006. Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18): 6285-6292. https://doi.org/10.1016/j.polymer.2006.07.013
  19. Majoinen, J., Walther, A., McKee, J. R., Kontturi, E., Aseyev, V., Malho, J. M., Ikkala, O. 2011. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8): 2997-3006. https://doi.org/10.1021/bm200613y
  20. Masruchin, N., & Park, B. D., 2015. Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils. Journal of Korean Wood Science Technology 43(5): 613-627. https://doi.org/10.5658/WOOD.2015.43.5.613
  21. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994. https://doi.org/10.1039/c0cs00108b
  22. Park, C. W., Han, S. Y., Lee, S. H., 2016. Size fractionation of cellulose nanofibers by settling method and their morphology. Journal of Korean Wood Science Technology 44(3): 398-405. https://doi.org/10.5658/WOOD.2016.44.3.398
  23. Sukul, M., Min, Y. K., Lee, S. Y., Lee, B. T. 2015. Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-${\beta}$ tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. European Polymer Journal 73: 308-323. https://doi.org/10.1016/j.eurpolymj.2015.10.022