DOI QR코드

DOI QR Code

Preparation of Cellulose Nanofibrils and Their Applications: High Strength Nanopapers and Polymer Composite Films

셀룰로오스 나노섬유의 제조 및 응용: 고강도 나노종이와 고분자복합필름

  • Lee, Sun-Young (Division of Wood Processing, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Chun, Sang-Jin (Division of Wood Processing, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Doh, Geum-Hyun (Division of Wood Processing, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Lee, Soo (Dept. of Chemical Engineering, Changwon National University) ;
  • Kim, Byung-Hoon (Seoul Science High School) ;
  • Min, Kyung-Seon (Seoul Science High School) ;
  • Kim, Seung-Chan (Seoul Science High School) ;
  • Huh, Yoon-Seok (Seoul Science High School)
  • 이선영 (국립산림과학원 녹색자원이용부 환경소재공학과) ;
  • 전상진 (국립산림과학원 녹색자원이용부 환경소재공학과) ;
  • 도금현 (국립산림과학원 녹색자원이용부 환경소재공학과) ;
  • 이수 (창원대학교 화공시스템공학과) ;
  • 김병훈 (서울과학고등학교) ;
  • 민경선 (서울과학고등학교) ;
  • 김승찬 (서울과학고등학교) ;
  • 허윤석 (서울과학고등학교)
  • Received : 2011.01.04
  • Accepted : 2011.03.09
  • Published : 2011.05.25

Abstract

Cellulose nanofibrils (CNF) with 50~100 nm diameter were manufactured from micro-size cellulose by an application of a high-pressure homogenizer at 1,400 bar. High strength nanopapers were prepared over a filter paper by a vacuum filtration from CNF suspension. After reinforcing and dispersing CNF suspension, hydroxypropyl cellulose (HPC) and polyvinyl alcohol (PVA)-based composites were tailored by solvent- and film-casting methods, respectively. After 2, 4, 6 and 8 passes through high-pressure homogenizer, the tensile strength of the nanopapers were extremely high and increased linearly depending upon the pass number. Chemical modification of 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) on the nanopapers significantly increased the mechanical strength and water repellency. The reinforcement of 1, 3, and 5 wt% CNF to HPC and PVA resins also improved the mechanical properties of the both composites.

본 연구에서는 마이크로 입자의 셀룰로오스를 1,400 bar의 압력에서 고압 호모지나이저(high-pressure homogenizer)를 이용하여 직경이 약 50~100 nm의 셀룰로오스 나노섬유를 제조하였다. 나노섬유 현탁액을 감압 여과하여 고강도 나노종이를 제조하였다. 용매 및 필름캐스팅법을 이용하여 나노섬유를 hydroxypropyl cellulose (HPC)와 polyvinyl alcohol (PVA) 수지에 보강 및 분산시켜 복합필름을 제조하였다. 고압 호모지나이저 통과 횟수를 2, 4, 6, 8까지 점점 증가시켰을 때, 나노종이의 인장강도가 매우 높았으며 통과횟수가 증가할수록 직선적으로 크게 향상되었다. 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES)로 나노종이를 화학 적 개질한 결과, 나노종이의 기계적 강도와 내수성이 크게 향상되었다. 셀룰로오스 나노섬유를 HPC와 PVA 수지에 중량대비 1, 3 및 5%로 보강시켰을 때, HPC와 PVA 복합필름의 기계적 강도가 크게 향상되었다.

Keywords

References

  1. 조미정, 박병대. 2010. Nanocellulose를 이용한 나노복 합재의 최근 연구 동향. 목재공학 38(6): 587-601.
  2. Chun, S. J., S. Y. Lee, G. H. Doh, S. Lee, and J. H. Kim. 2011. Preparation of ultra-strength nanopaper using cellulose nanofibrils. Journal of Industrial Engineering & Chemistry (In-Press).
  3. Henriksson, M. and L. A. Berglund. 2007. Structure and properties of cellulose nanocomposite films containing melamine formal- dehyde. Journal of Applied Polymer Science 106: 2817-2824. https://doi.org/10.1002/app.26946
  4. Iwamoto, S., A. N. Nakagaito, and H. Yano. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys A-Mater. Sci. Process 89: 461-466. https://doi.org/10.1007/s00339-007-4175-6
  5. Klemm, D., D. Schumann, F. Kramer, N. Hessler, M. Hornung, H. P. Schumauder, and S. Marsch. 2006. Nanocellulose as innovative polymers in research and application. Polysaccharides 205: 49-96. https://doi.org/10.1007/12_097
  6. Lee, S. Y., S. J. Chun, I. A. Kang, and J. Y. Park. 2009a. Preparation of cellulose nanofibrils by high-press homogenizer and cellulose-based composite films. Journal of Industrial Engineering & Chemistry 15: 50-55. https://doi.org/10.1016/j.jiec.2008.07.008
  7. Lee, S. Y., D. J. Mohan, I. A. Kang, G. H. Doh, S. Lee, and S. O. Han. 2009b. Nanocellulose reinforced PVA composite films: effect of acid treatment and filler loading. Fibers and Polymers 10: 77-82. https://doi.org/10.1007/s12221-009-0077-x
  8. Lu, Z. J. and Q. Wu. 2006. Surface characterization of chemically modified wood: dynamic wettability. Wood Fiber Sci. 38: 497-511.
  9. Oh, M. J., S. Y. Lee, and K. H. Paik. 2011. Formation of hydrophobic self-assembled manolayers on paper surface with silanes. Journal of Industrial Engineering & Chemistry (In-Press).
  10. Nakagaito, A. N. and H. Yano. 2005. Novel highstrength biocomposites based on the mechanical properties of high-strength plant fiber based composites. Appl. Phys A-Mater. Sci. Process 78: 547-552.
  11. Siro, I. and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17: 459-454. https://doi.org/10.1007/s10570-010-9405-y
  12. Zimmermann, T., E. Pohler, and T. Geiger. 2004. Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater 107: 636-641.

Cited by

  1. Beating Properties with Swelling agent and Concentration for Preparation of MicroFibrillated Cellulose (MFC) vol.47, pp.3, 2015, https://doi.org/10.7584/ktappi.2015.47.3.003
  2. Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite vol.42, pp.4, 2014, https://doi.org/10.5658/WOOD.2014.42.4.483
  3. Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.9
  4. Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.17