DOI QR코드

DOI QR Code

Hardness and Dimensional Stability of Radiata Pine (Pinus radiata D.Don) Heat-Compressed Wood - Effect of Press Temperature & Time -

라디에타소나무 열압밀화 목재의 경도와 치수안정성 - 압체 온도와 시간의 영향 -

  • Hwang, Sung-Wook (Dept. of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Lee, Won-Hee (Dept. of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University)
  • 황성욱 (경북대학교 농업생명과학대학 임산공학과) ;
  • 이원희 (경북대학교 농업생명과학대학 임산공학과)
  • Received : 2010.12.31
  • Accepted : 2011.03.30
  • Published : 2011.05.25

Abstract

It was investigated the hardness and dimensional stability of heat-compressed wood by compression temperature and time. The surface hardness of heat-compressed wood increased with increasing compression temperature. The lowest hardness value (5.0 N/$mm^2$) was observed in the temperature $70^{\circ}C$ while the highest value (15.6 N/$mm^2$) was obtained in compression temperature $220^{\circ}C$. Dimensional recovery test results showed that fixation of compression set improved with increasing compression temperature. However, the fixation effects were negligible by press time. Contact angle increased with increasing press temperature and time.

라디에타 소나무(Pinus radiata D.Don)를 이용하여 압체 온도와 시간에 따른 압밀화 목재의 경도와 치수안 정성을 조사하였다. 압체 온도가 상승함에 따라 표면경도도 함께 증가하였다. 열압체 시간 30분을 기준으로 압체 온도 $70^{\circ}C$에서는 경도 값이 5.0 N/$mm^2$, $220^{\circ}C$에서 15.6 N/$mm^2$으로 312% 향상되었으며, 60분에서는 313%, 90분에서는 224% 향상되는 것으로 나타났다. 치수회복실험 결과 열압체 온도가 상승함에 따라 치수고정효과는 상승한 반면 압체 시간의 증가에 의한 치수고정효과는 미약하였다. 접촉각 측정결과 압체 온도와 시간의 증가와 함께 접촉각도 증가했으며 압체 온도 $220^{\circ}C$에서는 $90^{\circ}$ 이상의 접촉각을 나타내어 표면이 소수성을 나타냄을 알 수 있었다.

Keywords

References

  1. 김광모, 박정환, 박병수, 손동원, 박주생, 김운섭, 김병남, 김병로. 2009. 삼나무 열처리재의 물리 및 역학적 특성. 목재공학 37(4): 330-339.
  2. 김정환, 이원희, 한규성, 변희섭. 2000. 수증기처리 열압 밀화 목재의 강도적 성질. 한국가구학회지 11(2): 1-6.
  3. 이원희, 한규성. 2000. 수증기 처리에 의한 열압밀화목재의 압축고정. 한국가구학회지 11(1): 85-89.
  4. Cadan, Z., S. Hiziroglu, and A. G. McDonald. 2010. Surface quality of thermally compressed Douglas fir veneer. Materials and Design 31: 3574-3577. https://doi.org/10.1016/j.matdes.2010.02.003
  5. Dwianto, W., 井上雅文, 則元 京. 1997. 熱處理による壓縮變形の固定. 木材學會誌 43(4): 303-309.
  6. Hakkou, M., M. Petrissans, A. Zoulalian, and P. Gerardin. 2005. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability 89: 1-5. https://doi.org/10.1016/j.polymdegradstab.2004.10.017
  7. Inoue, M., M. Norimoto, M. Tanahashi, and M. R. Rowell. 1993. Wood and Fiber Science 25(3): 224-235.
  8. Inoue, M., J. Kodama, Y. Yamamoto, and Y. Misawa. 2008. Dimensional stabilization of compressed wood using high-frequency heating II. 木材學會誌 52(3): 173-177.
  9. Kubojima, Y., T. Oktani, and H. Yoshihara. 2003. Effect of shear deflection on bending properties of compressed wood. Wood and Fiber Science 36: 210-15.
  10. Norimoto, M. 1993. Large compressive deformation in wood. Mokuzai Gakkaishi 39(8): 867-874.
  11. Seborg, R. M., M. A. Millett, and A. J. Stamm. 1945. Heat–stabilized compressed wood (Staypak). Mech. Eng. 67: 25-31.
  12. Tabarsa, T. 1995. The effects of transverse compression and press temperature on wood response during hot-pressing. M.Sc., thesis, The University of New Brunswick, Canada.
  13. Unsal, O., S. Korkut, and C. Atik. 2003. The effect of heat treatment on some properties and colour in eucalyptus (Eucalyptus camaldulensis Dehn.) wood. MADERAS: Ciencia Y Tecnologia Journal 5(2): 145-152.
  14. Unsal, O. and N. Ayrilmis. 2005. Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis Dehn.) wood. Journal of Wood Science 51: 405-409. https://doi.org/10.1007/s10086-004-0655-x
  15. Unsal, O. and Z. Cadan. 2008. Moisture Content, Vertical Density Profile and Janka Hardness of Thermally compressed Pine Wood Panels as a Function of Press Pressure and Temperature. Drying Technology 26: 1165-1169. https://doi.org/10.1080/07373930802266306
  16. Unsal, O., S. N. Kartal, Z. Cadan, R. A. Arango, C. A. Clausen, and F. Green. III. 2009. Decay and termite resistance, water absorption and swelling of thermally compressed wood panels. International Biodeterioration & Biodegradation 63: 548-552. https://doi.org/10.1016/j.ibiod.2009.02.001
  17. Wang, J. M., G. J. Zhao, and I. Lida. 2000. Effect of oxidation on heat fixation of compressed wood of China fir. Forestry Studies in China 2(1): 73-79.
  18. Wang, J. and P. A. Cooper. 2005. Vertical density profiles in thermally compressed balsam fir wood. Forest Products Journal 55: 65-68.

Cited by

  1. Change of Dimensional Stability of Thermally Compressed Korean Pine (Pinus koraiensis Sieb. et Zucc.) Wood by Heat Treatment vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.470
  2. Mechanical Properties of Thermally Compressed Domestic Softwoods vol.42, pp.6, 2014, https://doi.org/10.5658/WOOD.2014.42.6.666
  3. Hardness and Dimensional Stability of Thermally Compressed Domestic Korean Pine vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.68
  4. Downward Smoldering Fire Characteristics of Wood Chips and Wood Flour vol.13, pp.1, 2013, https://doi.org/10.9798/KOSHAM.2013.13.1.269
  5. A Study on Dimensional Stability and Thermal Performance of Superheated Steam Treated and Thermal Compressed Wood vol.44, pp.2, 2016, https://doi.org/10.5658/WOOD.2016.44.2.184