Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.
완전도체 스트립 회절격자에 의한 E-분극 산문제를 모멘트법을 이용하여 해석하였다. E분극의 경우는 청도 되는 표면전류밀도가 모서리 양 끝에서 매우 높을 것으로 추측된다. 이때 스트립에 청도되는 표면전류밀도는 차수가 0인 Ultraspherical 다항식의 급수와 적절한 모서리 경계조건을 만족하는 함수의 곱의 급수로 전개하였다. 전류밀도와 반사계수에 대한수직결과를 기존의 다른 수틀과 비교하였다. 본 논문의 수치결과가 기존의 다른 수를 사용했을 때 보다 기하학적 반사계수의 경도가 매우 빠르게 향상됨을 보였다. 기하학적 반사계수에서의 급변점 위치는 입사각, 스트립 폭 및 스트립 주기를 변화시킴으로써 이동시킬 수 있었다.
저항띠의 양끝에서 0( /square)으로 변하는 저항율을 가진 저항띠의 적자구조에 비스듬히 입사하는 E분극 평면파에 의한 전자파 산람눙제를 과수영역에서 모멘트 법을 이용하여 해석하였따. 이때 저항띠에 유도되는 전류일도는 2종 Chebyshev 다항식의 급수로 전개하였다 전개계수들은 과수영역에서 수치계산하였고, 본 논문에서의 변하는 저항율을 갖는 경우와 기존의 균일 저항율을 갖는 경우에 대해 기하광학적 반사계수의 수치계산 결과를 비교하였다. 그리고 기하광학적 반사계수의 크기에서 급변점들이 위치는 입사각과 스트립 주기를 변화시킴으로써 이동시킬 수 있었다. 이러한 급변점들은 전파모드와 감쇠모드 사이서 고차모드가 천이될 때 발생함을 알 수 있었다.
본 논문은 접지된 2중의 유전체 평면 사이에 변화하는 저항율을 갖는 저항 띠 격자 구조로 임의의 각도로 입사되는 E-분극 전자파 산란 문제를 모멘트 법으로 해석하였다. E-분극 산란에서는 저항 띠의 모서리 양끝에서 유도되는 전류 밀도가 매우 높을 것으로 예측되므로, 이 특성과 일치하는 기저 함수를 직교 다항식 일종인 2종 Chebyshev 다항식의 급수로 전개하여 수치 해석하였다. 산란 전자계는 주기적인 구조에 대응시킬 수 있는 Floquet 모드 함수의 급수로 전개하였고, 미지의 계수를 구하기 위하여 경계 조건을 적용하였다 또한, Fourier-Galerkin 모멘트 법을 적용함으로써 접지된 2중의 유전체 사이에 다양한 저항율을 갖는 저항 띠에 대해 기하광학적인 정규화 된 반사 전력에 관한 스트립 폭과 주기, 입사각의 영향 등을 수치 해석하였다.
기하학적 비선형 해석과정에서 일반적인 방법으로는 연속적인 하중증분단계의 기하학적 변위증분에서 절점회전이 미소하다는 가정에 의해 제한되어 접선강성행렬을 유도하고 유한회전의 영향을 증분평형 방정식의 반복계산하는 과정에서 고려하는 방법이 사용되고 있다. 그리고 개선된 방법으로는 미소회전증분의 가정을 무시하고 유한회전증분의 영향을 고려하여 접선강성행렬을 유도하는 방법이 Surana, Onate 및 Dvorkin 등에 의해서 개발되었다. 유한 회전을 고려하는 방법에서 Surana는 비선형 절점 회전함수를 가정하여 강성메트릭스를 유도하였으며 Onate와 Dvorkin은 전체좌표에서 회전각에 대한 회전행렬의 2차항까지를 고려한 강성메트릭스를 유도하였다. 본 논문에서는 유한요소의 기하학적 위치를 나타내는 변위함수의 방향 벡터를 삼각함수로 표현하여 연속적인 하중증분 사이의 방향벡터 증분을Tayler의 급수로 2차항까지 전개하므로써 비선형 회전 증분을 고려한 쉘 요소를 개발하였다. 기하학적 비선형 해석과정은 연속체 운동의 증분이론을 도입하여 Total Lagrange(T.L.)수식과 Updated Lagrange(U.L.)수식으로 비선형 거동을 해석하였다.
현대사회의 고속 고급 교통수단에 대한 요구에 부응하고, 고유가 및 온실가스 등 원유 기반의 교통 시스템의 문제를 해결하기 위해 교통 수단의 다양화 연구가 활발히 진행되고 있다. 석유문제가 심각한 상황으로 전개될 경우, 대륙과 대륙 그리고 국가와 국가 사이의 장거리 이동을 할 수 있는 교통수단은 전기로 추진되는 철도이다. 현재 대중화 되어있는 바퀴 식 철도차량은 초고속 운전 시 기하급수적으로 증가하는 소음, 공기저항 동력 전달의 한계, 레일의 마모라는 문제를 가지고 있으며 이러한 문제점을 가진 철도차량의 대안으로 선형 추진 시스템 연구가 진행 중이다[1] 국내에서는 LSM(Linear Synchronous motor)에 대한 연구가 활발히 진행되고 있으나 LPM 기반 철도 차량 추진시스템에 대한 연구는 이루어지지 않고 있다. 그러나 LSM 추진 시스템에 비하여 LPM 추진 시스템은 우수한 등판 능력, 광역범위의 주행 가능 영역, 경량화에 따른 높은 에너지 효율, 건설비 저감등 다양한 장점을 가지고 있으며 충분한 전략성을 가지고 있다.
유한수심에 대한 Michell적분의 계산을 위해 선각함수를 종방향 및 수직방향에 대해 Legendre다항식으로 전개하여 조파저항계수를 형상계수와 유체동력학적계수의 곱에 대한 4중급수로 구할 수 있는 식을 얻었다. 여기서 형상계수는 선각의 기하학적 형상만의 함수이고, 유체동력학적계수는 수심에 근거한 Fn와 수심과 홀수의 배의 길이에 대한 비들만의 함수이다. Wigley의 포물선형 선각과 Series 60의 $C_B$ 0.6에 대한 계산을 수행하고 그 결과를 기존의 실험결과(무한수심) 및 다른 이론결과(유한수심)와 비교하였다.
본 논문에서는 접지평면위에 2개의 유전체 층을 가지는 완전도체 격자구조에서의 전자파 산란문제를 간단한 방수치해석 방법으로 잘 알려진 PMM방법을 적용하여 입사각에 따라 수치해석하였다. 산란전자계는 Floquet 모드 함수의 급수로 전개하였다. 경계조건은 미지의 계수를 구하기 위하여 적용하였고, 도체의 경계조건은 접선성분의 전계와 스트립 위의 전류와의 관계를 위해 적용하였다. 입사각이 수직일 때 비유전율이 증가함에 따라 기하광학적 반사전력의 변하는 최소점은 스트립 폭이 높은 값으로 이동한다는 것은 주목되며, 이때 수직입사시 대부분의 전력은 다른 각도의 방향으로 산란된다.
3차원 편심 보요소의 기하학적 비선형 해석에서 증분 평형식을 유도하는 일반적인 방법의 대부분은 비선형을 고려한 가상일의 평형방정식을 선형화하는 방법으로, 회전증분이 미소하다는 가정에 의해서 선형화된 증분 평형식을 유도하고, 구조물의 변형이 일어나는 동안에 발생하는 유한회전의 영향은 반복계산의 과정에서 고려하는 방법이다. 그리고 유한회전을 고려하는 개선된 방법으로 Surana와 Onate 등에 의해서 개발되었는데, Surana는 비선형 절점함수를 가정하였고, Onate는 회전행렬의 관계식을 이차항까지 고려하여 비선형 증분 평형식을 유도하였다. 본 논문에서는 비선형 해석의 증분이론(incremental theory)을 도입, $^{t+dt}U_i$ 변위증분을 Talyer 급수로 2차항까지 전개하므로서 1차 선형항($U_L$)과 2차 유한회전항($U_R$)으로 표시하여 연속체운동의 비선형 증분평형식에서 유한회전의 영향을 고려하는 방법을 사용하였다. 이상의 해석방법에 따른 수치해석 결과는 Surana와 Onate등에 의하여 다루어진 예제와 비교 하였다.
본 논문에서는 유전체층 위의 완전도체띠 격자구조에 의한 TE(transverse electric)산란 문제를 전자파 수치해석 방법으로 알려진 FGMM(fourier-Galerkin moment method) 및 PMM(point matching method)을 이용하여 해석하였다. 산란전자계는 Floquet 모드함수의 급수로 전개하였고, 경계조건은 미지의 계수를 구하기 위하여 적용하였으며, 완전도체의 경계조건은 접선성분의 전계와 스트립위에 유도되는 전류와의 관계를 이용하였다. 도체띠의 폭과 주기, 유전층의 비유전율과 두께 및 입사각에 대해 정규화된 기하광학적 반사 및 투과전력을 계산하였다. 전반적으로 유전체층의 비유전율이 증가할수록 기하광학적 정규화된 반사전력이 증가하였다. 본 논문의 정확도를 검증하기 위하여 FGMM의 수치결과들은 PMM을 이용한 수치계산 결과들과 비교하여 매우 잘 일치하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.