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A Computational Method of Wave Resistance of
Ships in Water of Finite Depth

Abstract

A computational method of the Michell integral for water of finite depth is developed and the method
makes use of the expansion of the hull form by the Legendre polynomial in bothethe longitudinal and
the vertical directions. The wave resistance coefficient is given as a quadruple summation of the product
of the shape factor and the hydrodynamic factor. The shape factor depends only upon the geometry
of the hull form, and the hydrodynamic factor upon the depth—based Froude number and the ratios
of the water depth and the draft to the ship length. Example calculations are done for the Wigley parabolic
hull and the Series 60 Cyz 0.6, and the comparison of our results with the existing experimental data

is shown.
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1. Introduction

When a ship moves with a constant speed(U) on the
surface of water, her resistance increases as the depth(H)
of water decreases. It is believed that most of the increase
is due to that of the wave resistance, if the water is not
too shallow so that the viscous effect does not play an
important role. Although the thin ship theory(Michell,
1898) does not give an accurate prediction of the wave
resistance of a ship with a practical hull form due to
various reasons(Wehausen, 1973), as a recent study(Mil-
lward and Bevan, 1986)showed, it is accurate enough
for predicting a relative change in the wave resistance
as H varies.

Since Sretensky(1937) applied the thin ship theory
to obtain an appropriate formula for the ship wave resis-
tance in water of finite depth, there have been many
studies using his or similar formulae. However, most of
the previous studies assumed the hull form Y=F(X,Z),
Y being a product of a function of X(longitudinal coordi-
nate) and a function of Z(vertical coordinate) only, for
which the main reason was probably the numerical bur-
den. This is evidenced by the fact that the result of Schli-
chting and Strohbusch(1934) is still in use at many ship-
yards even today. Now, due to the fast development of
computers, we are no longer under such restriction, how-
ever, an efficient and accurate algorithm suitable to the
computation of Michell integral for the finite depth is
not as easy as it seems. In our study we employed the
method developed by Sendagorta and Grases(1988) for
computing the ship wave resistance in deep water. One
of the characteristics of this method is that the hull form
is expanded in terms of Legendre polynomials in each
direction so that the effect of the hull shape can be sepa-
rated from the hydrodynamic effect.

In the sequel, we first discuss the wave resistance for-
mula we used and the algorithm employed for it, and
follow the numerical results and the comparison with

other available experimental data.

2. Wave Resistance Formula and the Numerical
Algorithm

There are various forms of Michell integral for the
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ship wave resistance(Rw,) in water of finite depth. One
form we found convenient for the method employed is
as follows(see Kostyukov, 1968)

Co=—2" ¢, /‘ (E+P)G(W dp,
s o

40
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in which the following dimensionless variables are

found useful.
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Here, i=\/~—1, p is the density of water, g is the gravi-
tational acceleration, L, B, T, S, are LWL, breadth, draft,
wetted surface area of a ship, respectively, and H is the
depth of the water, K, is the dimensional wave number,
and we note that ko, a function of y and Fh, is sought
as a solution of the transcendental equation given above.

de Sendagorta and Grases(1988) noted that the term
I+3] can be transformed into a double series by using
the well—known expansions (Gradshteyn and Ryzhik,
1980),

expliox) = i 2n+ D, () Py(x),
n=0

exp(B) =3 (2n+ Din(BP2),
n=4

where J,, 1,, Py are the spherical Bessel function of the lIst
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kind, the modified spherical Bessel function of the lst
kind, and the Legendre polynomial, respectively, all being
the nth order.

Noting that

cosh ko(h+t2) = % g PP - g kb BT RO

where
2B8=kot, h1=2h—1>0,
we can get I+i/ in the form of double series

I+J=Doh) > S i"(2m+ 1 @n+ Djnla)
m=0

n=0
e 1+ (= Dre %1}, (B)Smm),
D{koh) = (1+¢ %) "1 g=ky(1+ ) V%

1 [o of
Stnn) = / / aTPm(x)P,,(H-Zz) dxdz.
-1 -1

We shall call SGm,n) the shape factor of(m,n). Since the
hull form is usually given as an offset, and for the obvious
numerical reasons, it is preferred to integrate the above
by parts with respect to x. Assuming that /=0 at x==+1,

the shape factor can be rewritten as
1 0
Stmn)=— / / S, 2)Pilx)P,(1+2 2) dxdz.
-1 -1

Here, the superscript prime of P, denotes the differentia-
tion with respect to its argument. Since P',(x) is odd
for even m, S(2mn) vanishes if f(x,z) is even in x,ie,
a hull is symmetric with respect to her midship.Consider-
ing that the usual ship form has a longitudinal symmetry
approximately, S(2m,%) is in general expected very small.
We also note that S(0,n)vanishes for all #, and that S(m,
0) represents the longitudinal distribution of the displa-
cement and S(1,#) the vertical one. For example, it can
be easily shown that S(1,0)=—2CsS5(2,0)=—6Cs x1,S
(1,1) = —2Cy—4Cy 21, where Cp is the block coefficient
and xy, z; are the LCB, VCB of a given ship, respectively,
which can be used to check the validity of the developed
numerical code for computing the shape factor.
Rewriting the real and the imaginary part of I +4/ sepa-

rately, we obtain

PHp=p3 3 3 S (0" (@ @in(p)

m=0 n=0 r=0 s-0
1 (BSmm)S (2, 5)
+ s (@] w1 (@i (B (BYSCm+1,n)

o
ofy
A

- S(2r+1,9)},
where
j m(@=Cm+Djn(a),

i w(B % ko) =(2n+ Ve #(1+ (— 1) *1}i, ().
Substituting this into the Michell integral and defining
the hydrodynamic factor as

Vim, n, 7, s)= /"° D*Gj m(@)j L7 (B)i «(B) dp,
Ho
we get the guadruple summation for Cw as

=Gy 3 3 S (—pmr

m=0 n=0 r=0 s=0
{(Vv@mn2r,s) - SCmmn)S(2r,s)
+V@2m+1n2r+1,5) SCm+1n) S2r+1,s)}.

As u—co, ko~ and hence a~f,B—p2 Thus, we can
show that

DG m(@)j @i n(Bi (B ~u5 as u—co.

As the integrand for the hydrodynamic factor diminishes
very fast, there is little difficulty in computing it by a
numerical quadrature such as the Simpson’s rule, In co-
mputing the shape factor, it is necessary to have a good
surface interpolant, since as m, n increase we need more
and more values of the offset to carry out the numerical
integration with an acceptable accuracy. For example,
when (m,n)=1(55), we need at least 40 stations and 50
waterlines in order to have ten points between the conse-
cutive zeros of the related Legend "2 polynomials. In de-
veloping our code we found that the interpolation of the
hull offset by the bicubic B— spline(Barsky and Green-
berg, 1980) offering a reasonably good accuracy for non-
mathematical hull forms. Once the shape factor is obtai-
ned for a given ship, it can be stored and used for the
computation of Cw for any depth of water. Given L,T
and H, on the other hand, the hydrodynamic factor can
be computed as a function of Fh once and for all, and

can be stored for later use.
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3. Numerical Results and Discussion

Wigley Hull

For some elementary hull forms, we can get the shape
factor analytically in closed form, and we chose the follo-
wing Wigley parabolic hull as our first computational ex-

ample.

f& D=1-21-2),
L=16m, B=16m, T=1m, S=37.98m".

Due to the longitudinal symmetry, every S(2mns) vani-
shes identically. Furthermore, since the x—derivative of
f(x, 2)is linear in x and quadratic in z, all the shape factors
are zero, except those corresponding to m=1, n=0,1,2

for which the values are given as

=38 =—2 sqp=2
(1,0 = 9’ RV 9’ 512 s

Note the fast decrease of absolute magnitude of the shape
factor as n increases. Now, the quadruple summation for

Cw becomes a double summation as

Cw=Co Zz , ZZO V(1m,1,)8(1,m)S(1,5).

As the integration for the corresponding hydrodynamic
factors can be performed as accurate as desired, we can
obtain exact values of Cw for the Wigley parabolic huli,
and we show our result for deep water in the Fig. 1
for the purpose of comparison with those presented in
the Workshop on Ship Wave — resistance Computations
(Bai, 1979). Shaded area in the Fig. 1 corresponds to
the range of experimental data, and we conjecture that
the large value of L/B, namely 10, is responsible for the
excellent agreement shown.Considering that in the work-
shop of 1979 people produced many different values of
Cw even when they used the same Michell formula, we
can acknowledge how tremendously the development of
the computer in the mean time has benefited us. By the
way, all the computational results presented in this study
were done on a 486(33M Hz)based personal computer.

Fig. 2 exhibits the variation of Cw with Fn for 4 differ-
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Fig. 1 Comparison of the computed wave resistance
coefficient and the experimental data(Bai, 19
79) for the Wigley hull in deep water
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Fig. 2 Variation of the wave resistance coefficient with
the Froude number for H=27,4T,8T and L for
the Wigley hull

ent values of H, i.e, 2T, 47, 8T and L. We note that
Cw for H=L is hardly distinguishable from that for H= 0.
Cw gets its maximum at F4=1.0, 0.94, 0.71, 0.5 in each

case, respectively. Thus, the greater H becomes the lower
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Fh gets where Cw has its maximum. As H decreases,
the maximum of Cw increases rapidly for H{8T(=L/2).
This is because the disturbance caused by the ship near
Fr=10 is relatively stronger for smaller H. As anticipa-
ted, at very low and at very high Fn, Cw does not change
much as H, since the effect of the water depth upon
Cw is insignificant in those ranges of Fn.

Fig. 3 shows how Cw varies with H for 4 different
values of Fn, namely, 0.3, 04, 0.5 and 0.7. Here, we ob-
serve a general trend that when a ship runs with a cons-
tant speed while the depth of water is decreasing, her
resistance increases first until it gets its maximum at
a H corresponding to Fi=1.0 approximately, and then
decreases rather rapidly for supercritical speeds, except
for the range of very small H at the end, say H being
less than one and half times the draft, where Cyw increases
again though not much. Since Cy for deep water has
its so—called the last hump near Fn=0.5, Cw for Fn>0.5
is less than that for Fn=0.5 for all depths of water as

can be observed in the Fig. 3.

c;,'=17"g;fﬁ

0.025 J Fn =03
0.020 -
0.015 -
0.010 -
Fn=05
0.005
Fn =07
T [ T T
5.0 10.0 15.0 H(m)

Fig. 3 Variation of the wave resistance coefficient with
the depth of the water for Fn=0.3,0.4,0.5 and
0.7 for the Wigley hull
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Series 60 Cp 0.6

As an example of the practical hull form, we took the
Series 60 Cz 0.6(4210W), which was one of the models
also chosen at the workshop in 1979(Bai, 1979). In com-
puting the shape factor numerically for a nonmathematical
hull form, we need to use a surface interpolant as stated,
and we employed the bicubic B— spline method of Barsky
and Greenberg(1980).

Table 1 Particulars and the shape factor of the Series
60 Ces 0.6

Lu=123.962m, B=16.2550m, T=6.50140m,
5=2534.39m*

n=05 Shape Factor

S(0) | 0.000000) 0.000000 0000000 0.000000] 0.000000| 0.000000
S(1n) 11176150 -0.087000 0.022361 |-0.013911{ 0.005126 |-0.002503
S(2n) |0.047546[-0.034387 |-0.018882] 0.000038{-0.001591 | 0.000165
$(3m) {0.311060{-0.0547981-0.014995(-0.006143 |-0.001464 |-0.000660
5(4m) | 0.043169}-0.006848-0.012639 |-0.007137 |-0.002300 |-0.001049
S(52) | 0.079700{ 0.055864-0.014216 0.003628 {-0.003582 -0.001361
S(6x) | 0.059304] 0.013811 ] 0.004604 [-0.003607 [-0.003692 |-0.000949
$(7n) [-0.024000-0.005850| 0.007977 }-0.000562 -0.002699 |-0.000928

Full convergence test for the shape factor was not pos-
sible due to the time limit, and max.(mn)=(7,5) was
taken, which means that the hull form is represented
in the 6th order polynomial in x and 5th in 2, respectively.
As input data in computing the shape factor for the Series
60, an offset with the 21 stations and 16 waterlines was
prepared, and the interpolant generated a hull form at
201 stations and 101 waterlines. We show in the Table
1 a set of so attained values of the shape factor along
with the principal particulars of the Series 60 Cx 0.6.
Since Cp is 0.6, S(1.0) is expected to be—1.2, and our
numerical value is —1.176(2% error). We could have
improved the result by taking more offset points, howe-
ver, we decided to take the above error as acceptable,
for our aim at the moment is to find out the relative
change in the wave resistance.

Fig. 4 displays the comparison of the computed Cw
and the experimental results taken from Bai(1979). Un-
like the previous example calculation for the Wigley hull,

the agreement is not so good, and among other possible

Transactions of SNAK, Vol. 29, No. 2, May 1992



F Tl el a7 Aol #ahed

c.-#i,

0.003

I

Q>

S

0.001

et

1A

018 0. 25 03 Fn= g
Fig. 4 Comparison of the computed wave resistance
coefficient and the experimental data(Bai, 19
79) for the Series 60 Csz 0.6 in deep water
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Fig. 5a Variation of the wave resistance cofficient with
the Froude number for H=2T,47,8T and L
for the Series 60 Cp 0.6

reasons for the difference we point out the smallness
of the ratio L/B(=7.626). That is, we contend the confir-
mation of the well-known fact that the thin ship theory
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Fig. bb Ratio of the wave resistance coefficient at a
specific depth and that at H=L vs. the depth
Froude number for H=37,4T,and 87T for the
Series 60 Cs 0.6
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Fig. 6 Variation of the wave resistance coefficient with
the depth of the water for Fn=0.3,0.4,0.5 and
0.7 for the Series 60 Cy 0.6
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gives less accurate result for smaller L/B ratio, which
is equivalent to saying that we still lack a reliable way
of predicting the absolute value of the wave resistance
of a ship with smaller and practical values of L/B ratio
(Wehausen, 1973).

Fig. 5a demonstrates the variation of Cw with Fn for
H=2T, 4T, 8T and L. We can see the same tendency
as shown in the Fig. 2, but now with bigger values of
Cuw for the Series 60. In order to show the relative change
of Cw as H varies, the similar numerical results are prese-
nted in a different way in the Fig. 5b, where the ordinate
is taken as the ratio of Cw for a specific depth and that
for #=L, and the abscissa as Fk. This shows the very
similar characteristics with the result of Millward and
Bevan(1986), though they chose the Wigley parabolic
hull as their mathematical model.

Fig. 6 shows the change of Cw with H for Fn=0.3,
04, 0.5 and 0.7. As expected from the previous figures,
We can observe the same pattern as in the Fig. 3 for
the Wigley hull. We note that in the case of the Series
60, Cw for Fn=0.7 is now even smaller than for Fn=
04 for all depths.
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