• 제목/요약/키워드: 기하급수 전개

Search Result 21, Processing Time 0.027 seconds

Error Estimation for the Semi-Analytic Design Sensitivity Using the Geometric Series Expansion Method (기하급수 전개법을 이용한 준해석 민감도의 오차 분석)

  • Dan, Ho-Jin;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.262-267
    • /
    • 2003
  • Error of the geometric series expansion method for the structural sensitivity analysis is estimated. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of the promising remedies is the use of geometric series formula for the matrix inversion. Its result of the sensitivity analysis converges that of the global difference method which is known as reliable one. To reduce computational efforts and to obtain reliable results, it is important to know how many terms need to expand. In this paper, the error formula is presented and Its usefulness is illustrated through numerical experiments.

The Fast Convergent Solution of E-Polarized Reflection Coefficient by a Perfect Conductor Strip Grating (완전도체 스트립 회절격자에 의한 E-분극 반사계수의 급속한 수염해)

  • Uei-Joong Yoon
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.10-16
    • /
    • 1995
  • The E-polarized scattering problems by a perfect conductor strip grating are analyzed by the method of moments. For an E-polarization the induced surface current density is expected to blow up at the strip both edges. Then the induced surface current density on the strip is expanded in a series of multiplication of Ultraspherical ploynomials with zeroth order and functions with appropriate edge boundary condition. The numerical results for current density and reflection cofficient are compared with other functions, it is shown that numerical results better improves the convergence of the moment method soulutions with general incident angles than the existing several other functions. The sharp variation points in the magnitude of geometric-optical reflection coefficient can be moved by varying the incident angle, strip width, and strip spacing.

  • PDF

E-Polarized Reflection Coefficient by a Tapered Resistive Strip Grating with Zero Resistivity at Strip-Edges (저항띠의 양 끝에서 0으로 변하는 저항률을 갖는 주기격자에 의한 E-분극 반사계수)

  • 윤의중;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.331-337
    • /
    • 1994
  • The scatting problem by E-polarized plane wave with obique incidence on a tapered resistive strip grating with zero resistivity(perfectly conducting) at strip-edges is analyzed by the method of moments in the spectral domain. Then the induced surface current density on the strip is expanded in a series of Chebyshev polynomials of the second kind. The expasion coefficients are calculated numerically in the spectral domain, the numerical results of the geometric-optical reflection coefficient for the tapered resistivity in this paper are compared with those for the existing uniform resistivity. And the position of sharp variation points in the magnitude of the geometric-optical reflection coefficient can be moved by varying the incident angle and the strip spacing, It is found out that these sparp variation points are due to the transition of higher mode between the propagation mode and the evanescent mode.

  • PDF

Analysis of E-polarized Plane Wave Scattering by a Tapered Resistive Strip Grating in a Grounded Double Dielectric Layer (접지된 2중 유전체 사이의 저항 띠 격자 구조에 의한 E-분극 전자파 산란 해석)

  • Tchoi, Young-Sun;Yang, Seung-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.656-663
    • /
    • 2007
  • In this paper, when a E-polarized plane wave is incident on the grating consisting of tapered resistive strips, electromagnetic scattering is analyzed using the method of moments(MoM). The induced current density of each resistive strip in a grounded double dielectric layer is expected to blow up at both edges. To satisfy this, the induced surface current density is expanded in a series of Chebyshev polynomials of the second kind. The scattered electromagnetic fields are expanded in a series of Floquet mode functions. The boundary conditions are applied to obtain the unknown current coefficients. According to the variation of the involving parameters such as strip width and spacing and angle of the incident field, numerical simulations are performed by applying the Fourier-Galerkin moment method. The numerical results of the normalized reflected power for resistive strips case for several resistivities are obtained.

A Geometrically Nonlinear Analysis of the Curved Shell Considering Large Displacements and Large Rotation Increments (대변위 및 대회전을 고려한 만곡된 쉘의 기하학적 비선형 해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • This paper presents geometrically nonlinear formulation of shell problems using the three-dimensional curved shell element, which includs large displacements and large rotations. Formulations of the geometrically nonlinear problems can be derived in a variety of ways, but most of them have been obtained by assuming that nodal rotations are small. Hence, the tangent stiffness matrix is derived under the assumptions that rotational increments are infinitesimal and the effect of finite rotational increments have to be considered during the equilibrium iterations. To study the large displacement and large rotation problems, the restrictions are removed and the formulations of the curved shell element including the effect of large rotational increments are developed in this paper. The displacement based finite element method using this improved formulation are applied to the analyses of the geometrically nonlinear behaviors of the single and double curved shells, which are compared with the results by others.

  • PDF

Thrust force system using 2 phase pulse for Urban Rail system (2상 펄스파 구동을 통한 점착식 도시철도 차량용 추진 시스템)

  • Lee, GangSeok;Kim, Seung-Joo;Jeong, Geochul;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1607-1608
    • /
    • 2015
  • 현대사회의 고속 고급 교통수단에 대한 요구에 부응하고, 고유가 및 온실가스 등 원유 기반의 교통 시스템의 문제를 해결하기 위해 교통 수단의 다양화 연구가 활발히 진행되고 있다. 석유문제가 심각한 상황으로 전개될 경우, 대륙과 대륙 그리고 국가와 국가 사이의 장거리 이동을 할 수 있는 교통수단은 전기로 추진되는 철도이다. 현재 대중화 되어있는 바퀴 식 철도차량은 초고속 운전 시 기하급수적으로 증가하는 소음, 공기저항 동력 전달의 한계, 레일의 마모라는 문제를 가지고 있으며 이러한 문제점을 가진 철도차량의 대안으로 선형 추진 시스템 연구가 진행 중이다[1] 국내에서는 LSM(Linear Synchronous motor)에 대한 연구가 활발히 진행되고 있으나 LPM 기반 철도 차량 추진시스템에 대한 연구는 이루어지지 않고 있다. 그러나 LSM 추진 시스템에 비하여 LPM 추진 시스템은 우수한 등판 능력, 광역범위의 주행 가능 영역, 경량화에 따른 높은 에너지 효율, 건설비 저감등 다양한 장점을 가지고 있으며 충분한 전략성을 가지고 있다.

  • PDF

A Computational Method of Wave Resistance of Ships in Water of Finite Depth (유한수심에서의 조파저항계산에 관하여)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 1992
  • A computational method of the Michell integral for water of finite depth is developed and the method makes use of the expansion of the hull form by the Legendre polynomial in both the longitudinal and the vertical directions. The wave resistance coefficient is given as a quadruple summation of the product of the shape factor and the hydrodynamic factor. The shape factor depends only upon the geometry of the hull form, and the hydrodynamic factor upon the depth-based Froude number and the ratios of the water depth and the draft to the ship length. Example calculations are done for the Wigley parabolic hull and the Series 60 $C_B$ 0.6, and the comparison of our results with the existing experimental data is shown.

  • PDF

Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers (접지평면위에 2개의 유전체층을 가지는 도체띠 격자구조에서의 전자파산란 해석)

  • 김용연;방성일
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.1
    • /
    • pp.102-109
    • /
    • 1999
  • In this paper, Electromagnetic scattering problem by a perfectly conducting strip grating with 2 dielectric layer on a grounded plane by incidence of a electric wave is analyzed by applying the PMM (Point Matching Method) known as a simple procedure. The scattered electromagnetic fields are expanded in a series of Floquet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the conducting boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip When the incident angle is normal incidence the minimum value of the geometrically normalized reflected power according as relative permittivity is increased it should be noted that the value of the strip width gets moved toward high value. Them most energy by a normal incident wave is scattered in direction of the other angles except normal incident angle.

  • PDF

A Geometrically Nonlinear Analysis for the Eccentric Degenerated Beam Element Considering Large Displacements and Large Rotations (대변위 밀 대회전을 고려한 편심된 격하 보요소의 기하학적 비선형해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.227-233
    • /
    • 1992
  • To study the large displacement and large rotation problems, geometrically nonlinear formulation of eccentric degenerated beam element has been developed, where the restrictions of infinitesimal rotation increments are removed and the incremental equations are derived using the Taylor series expansion of the displacement function at time t+dt. The geometrically nonlinear analyses are carried out for the cases of cantilever, square frame, shallow arch and 45-degree bend beam and all of them are compared with each of the other results published. The element developed in the present research can be efficiently utilized for analysis of the nonlinear behaviours of structures when displacements and rotations are large.

  • PDF

A Study on TE Scattering by a Conductive Strip Grating Over a Dielectric Layer (유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4158-4163
    • /
    • 2015
  • In this paper, the solutions of TE(transverse electric) scattering problems by a condutive strip grating over a dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic fileld. The scattered electromagnetic fields are expanded in a series of floguet mode functions, the boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is used for the relationship between the tangential electric field and the induced surface current density on the strip. The numerical results for the reflected and transmitted power of zeroth mode analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of dielectric layer, and incident angles. Generally, according to the relative permittivity of dielectric layer increased, also the normalized reflected power of zeroth mode increased. To examine the accruacy of this paper, the numerical results of FGMM shown in good agreement compared to those of PMM.