• Title/Summary/Keyword: 기공체

Search Result 550, Processing Time 0.024 seconds

생체의료용 다공성 타이타늄 특성평가 및 표면제어 연구

  • Hyeon, Yong-Taek;Kim, Seung-Eon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.47.2-47.2
    • /
    • 2009
  • 인체의 뼈와 같은 손상된 경조직을 치료 또는 대체하기위한 정형외과용 임플란트를 설계하는데 있어 뼈의 생체역학적 특성과 유사한 성질을 갖는 다공성 지지체에 대한 연구가 최근 관심을 끌고 있다. 다공성 지지체는 조직이 원활히 재생될 수 있어야 하며, 또한 주변 조직과도 생물학적인 고착이 잘 되도록 기공들이 상호 연결된 구조를 가져야 한다. 이와 같은 다공성 지지체용 소재를 제조하기 위하여 본 연구에서는 타이타늄 분말을 사용하여 3차원 적층조형공정으로 다공성 타이타늄 지지체를 제조하였다. 제조된 다공체의 물성 및 기계적 특성을 평가하기 위하여 압축시험과 변형해석을 수행하였으며, 아울러 제조된 지지체의 생체적합성 향상을 위하여 양극산화 공정 등의 표면처리를 수행하여 그에 대한 특성을 평가하였다. 분말야금 공정으로 제조된 지지체는 골조직의 성장에 적합한 약 $300\sim400{\mu}m$의 기공 크기를 갖도록 제어하였고, 기공도는 60~75%로 제어하였다. 아울러 다공성 타이타늄의 생체적합성을 부여하기 위하여 양극산화공정으로 지지체의 표면에 Ca 및 P을 포함하는 산화층을 형성시키는 표면처리를 수행하였다. 양극산화공정에 의하여 표면에 미세기공을 포함하는 산화층을 형성시킬 수 있었으나 이와 같은 표면구조는 조골세포의 부착과 영향에는 큰 영향을 미치지 않는 것으로 확인되었다.

  • PDF

Morphology and Properties of Microcellular foams by High Infernal Phase Emulsion Polymerization: Effect of Emulsion Compositions (HIPE 중합에 의한 미세기공 발포체의 모폴로지 및 물성: 유화계 조성의 영향)

  • 정한균;지수진;이성재
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.759-766
    • /
    • 2002
  • Regular, spherical and isotropic open-microcellular foams having low density were prepared by the high internal phase emulsion (HIPE) polymerization mainly composed of styrene monomer and water The effects of Polymerization conditions. such as the content of water, divinylbenzene as a crosslinking agent and dodecane as a chain transfer agent, were investigated based on the tell size and foam properties. The microstructural morphology was observed using scanning electron microscopy (SEM) and the compression modulus of the foam was evaluated using compression test. The dropwise feeding of the aqueous phase into the oil phase was more effective than the batch feeding in producing the uniform and stable foam. Agitation speed and surfactant strongly influenced on the cell size and the window size between water droplets. Introduction of chain transfer agent increased the cell size, whereas it decreased the window size. Compression modulus increased with the crosslinking agent, but decreased with the chain transfer agent.

Preparation of porous hydroxyapatite ceramics (Hydroxyapatite 다공체의 제조)

  • Song, J.T.;Ryou, D.W.;Choi, S.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.284-293
    • /
    • 1994
  • The various methods of preparation for the porous hydroxyapatite ceramics using naphthalene, $H_20_2$ and chlorinated paraffine with $H_20_2$ were investigated. And then the prepared orous hydroxyapatite ceramics were characterized by XRD, SEM, FT-IR and the apparent porosity. The pore size of porous hydroxyapatite ceramics was controlled by the content and size of naphthalene granular. It was found that the porosity of it was increased with the amount of naphthalene, but the bending strength was decreased. The application of hydrogen peroxide produced porous materials like a sponge tissue, but the porosity and the shape of sintered body were hardly controlled. In the case of using chlorinated paraffine with the simultaneous addition of hydrogen peroxide, the sponge tissue was obtained and also could be controlled from 50 up to about 65% porosity of it.

  • PDF

Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine- Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization (고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도)

  • Kim, Haseung;Na, Hyo Yeol;Lee, Jong Heon;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.293-299
    • /
    • 2015
  • Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to $10^{-3}S/m$.

AIN Microstructure Evalution through Hg-porosimetry (수은침투법을 이용한 AIN 미세구조연구)

  • Lee, Hae-Weon;Yoon, Bok-Gyu;Hong, Kug-Sun
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.217-222
    • /
    • 1992
  • An attempt was made to analyze green microstructure of AIN samples prepared by slip casting and dry pressing through Hg-porosimetry. Slip cast samples with narrow pore size distribation and high packing density showed higher sinterability and homogeneous distribution of second phase(s). Hg-porosimetry is and effective way to determine pore structure if "ink bottle" phenomenon does not occur. A comparison study with porosity measurement by quantitative microscopy showed that the effectiveness of Hg-porosimetry measurement could be extended to higher sintered density as long as pores remained open.

  • PDF

Preparation and Characterization of Porous Sintered Body Made from Coal Bottom Ash and Dredged soil (석탄(石炭) 바닥재와 준설토(浚渫土)를 이용한 다공성(多孔性) 소결체(燒結體)의 제조 및 특성 평가)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The spheric sintered body with $6{\pm}2mm$ diameter was manufactured in a rotary kiln at $1125^{\circ}C$/15 min using green body formed by pelletizing the batch powder composing of coal bottom ash produced from power plant and dredged soil by 70:30, wt%. And the physical properties of sintered body (BD) were analyzed to confirm the possibility for applying to an absorbent to restore a contaminated soil. The sintered body had a giant pore above 100 ${\mu}m$ and a fine pore below 10 ${\mu}m$, and bulk density was 1.4. Also its specific surface area, porosity and void proportion were $12.0m^2/g$, 30.1% and 38.2% respectively. The crushed body (BD-C), produced by crushing a BD specimen into an irregular shape with a aspect ratio of about 2, was similar to BD specimen at bulk density and pore size distribution. But it had superior values of specific surface area, porosity and void proportion compared with BD specimen owing to a decreased apparent volume due to conversion of closed pore existed at interior of BD to open pore during a crushing process. The IEP of sintered body occurred at about pH=5, so the optimum pH condition of reacting aqueous solution could be known before bonding a microbe to the sintered body. Hence, the optimum void proportion and porosity of an absorbent can be obtained by appropriate mixing a BD with BD-C from the base data calculated in this study.

Sintering prevention of Ag by the addition of 2-dimensional nanosheet (2차원 구조 나노시트의 첨가를 통한 Ag의 치밀화 방지)

  • Lee, Sang Eun;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.51-54
    • /
    • 2022
  • The physical properties of the noble metal current-collector used for fuel cells are greatly influenced by the material porosity. Therefore, increasing the porosity of the material studies has attracted much attention. One of the most representative strategies is to use porosity additives in sintering materials. The conventional porosity additive had a threedimensional structure of a spherical powder. In this study, porosity additive with 2-dimensional (2D) nanosheet was used to decrease the sintering density of Ag current-collector and its effect was confirmed. As a 2D layered structure material, 1 nm-thick RuO2 nanosheets were used as porosity additives.