Preparation and Characterization of Porous Sintered Body Made from Coal Bottom Ash and Dredged soil

석탄(石炭) 바닥재와 준설토(浚渫土)를 이용한 다공성(多孔性) 소결체(燒結體)의 제조 및 특성 평가

  • Kim, Kang-Duk (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kang, Seung-Gu (Department of Advanced Materials Engineering, Kyonggi University)
  • Published : 2010.02.26

Abstract

The spheric sintered body with $6{\pm}2mm$ diameter was manufactured in a rotary kiln at $1125^{\circ}C$/15 min using green body formed by pelletizing the batch powder composing of coal bottom ash produced from power plant and dredged soil by 70:30, wt%. And the physical properties of sintered body (BD) were analyzed to confirm the possibility for applying to an absorbent to restore a contaminated soil. The sintered body had a giant pore above 100 ${\mu}m$ and a fine pore below 10 ${\mu}m$, and bulk density was 1.4. Also its specific surface area, porosity and void proportion were $12.0m^2/g$, 30.1% and 38.2% respectively. The crushed body (BD-C), produced by crushing a BD specimen into an irregular shape with a aspect ratio of about 2, was similar to BD specimen at bulk density and pore size distribution. But it had superior values of specific surface area, porosity and void proportion compared with BD specimen owing to a decreased apparent volume due to conversion of closed pore existed at interior of BD to open pore during a crushing process. The IEP of sintered body occurred at about pH=5, so the optimum pH condition of reacting aqueous solution could be known before bonding a microbe to the sintered body. Hence, the optimum void proportion and porosity of an absorbent can be obtained by appropriate mixing a BD with BD-C from the base data calculated in this study.

화력발전소에서 배출되는 바닥재와 준설토를 70:30(wt%)로 혼합하고 이를 $6{\pm}2mm$ 크기 구형으로 성형 및 로터리 킬른에서 $1125^{\circ}C$/15 min으로 소성한 뒤, 그 물리적 특성을 평가함으로써 오염 토양을 복원하는데 사용되는 흡착제로의 적용 가능성을 분석하였다. 제조된 소결체(BD)는 100 ${\mu}m$ 이상의 거대 기공 및 10 ${\mu}m$ 이하의 미세기공을 모두 가지고 있었으며, 비표면적, 기공율 그리고 공극율은 각각 $12.0m^2/g$, 30.1%그리고 38.2%이었다. BD 소결체를 한번 분쇄한 시편(BD-C)은 종횡비$\fallingdotseq$2의 부정형이었으나, 부피비중 및 기공크기 분포는 BD와 비슷한 값을 나타내었다. 한편 BD-C 시편의 비표면적, 기공율 그리고 공극율은 BD에 비해 더 우수한 값을 나타내었는데 이는 내부에 존재하던 폐기공(closed pores)이 분쇄과정에서 개기공(open pores)으로 변환되면서 겉보기 부피가 감소했기 때문이다. 제조된 소결체의 영 전하점(IEP)는 약 pH=5이었고 따라서 미생물을 소결체에 결합시킬 때 반응용액의 최적 pH를 알 수 있었다. 본 연구에서 제조된 소결체는 오염 토양 복원에 사용되는 흡착제로의 적용이 가능하며, 더구나 측정된 데이터를 이용하여 BD와 BD-C를 적절한 비율로 혼합하면 적용 상황에 따라 다른 공극율, 기공율 등의 요구 조건을 최적으로 맞출 수 있을 것으로 기대된다.

Keywords

References

  1. J. Striegel, D. A. Sanders and J. N. Veenstra, 2001: Treatment of Contaminated Groundwater Using Permeable Reactive Barriers, Environmental Geosciences, 8(4), 258-265. https://doi.org/10.1046/j.1526-0984.2001.84004.x
  2. J. P. Richardson and J. W. Nicklow, 2002: In Situ Permeable Reactive Barriers for Groundwater Contamination, Soil and Sediment Contamination, 11(2), 241-268. https://doi.org/10.1080/20025891106736
  3. H. H. Chae, Y. O. Bae and J. W. Park, 2007: Durability Extension of Fe(O) Column with Shewanella Algae BrY on TCE treatment, J. of the Kor. Gee-Environmental Soc., 8(2), 41-48.
  4. T. A. Burt, Z. Li and R. S. Bowman, 2006: Evaluation of Granular Surfactant-Modified/Zeolite Zero Valent Iron Pellets As a Reactive Material for Perchloethylene Reduction, J. of Environmental Eng., 131(6), 934-942.
  5. K. S. Han, 2006: 무기질 다공체를 활용한 토양오염 예방 및 복원기술 개발, Ceramist, 9(2), 47-55.
  6. M. M. Scherer, S. Richter and R. L. Valentine, P.J.J. Alvarez, 2000: Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean up, Critical Reviews in Microbiology, 26(4), 221-264. https://doi.org/10.1080/10408410091154237
  7. L. Yerushalmi, M. F. Manuel, and S. R. Guiot, 1999: Biodegradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation 10, 341-352. https://doi.org/10.1023/A:1008327815105
  8. Y. Liang, X, Zhang, and D. Dai, G. L., 2009: Porous biocarrier-enhanced biodegradation of crude oil contaminated soil, International Biodeterioration & Biodegradation, 63, 80-87. https://doi.org/10.1016/j.ibiod.2008.07.005
  9. J. S. Reed, 1995: Principles of ceramics processing 2nd, John Wiley & Sons, Inc., 504.
  10. Y. Kim, and R. J. Kirkpatrick, 1997: 23Na and 133Cs NMR study of cation adsorption on mineral surfaces: Local environments, dynamics, and effects of mixed cations, Geochim. Cosmochim. Acta 61, 5199-5208. https://doi.org/10.1016/S0016-7037(97)00347-5