Synthesis of Mesoporous Silica Using Municipal Solid Waste Incinerator Ash Slag : Influence of NaOH Concentration

생활(生活) 폐기물(廢棄物) 소각재(燒却材) 슬래그를 이용(利用)한 메조포러스 실리카 합성(合成) : NaOH 농도(濃度)의 영향(影響)

  • Han, Yo-Sep (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Jung, Jong-Hoon (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Park, Jai-Koo (Department of Natural Resources and Environmental Engineering, Hanyang University)
  • 한요셉 (한양대학교 자원환경공학과) ;
  • 정종훈 (한양대학교 자원환경공학과) ;
  • 박재구 (한양대학교 자원환경공학과)
  • Published : 2010.02.26

Abstract

It was investigated that effects of NaOH concentration on synthesis of mesoporous materials using municipal solid waste incinerator ash slag (MSWI-ash slag). In order to increase the purity and maximize the amount of extracted Si content the raw MSWI-ash slag was mechanically activated. Extraction of Si from the MSWI-ash slag was carried out by alkali treatment using concentrated NaOH solution, which varied from 1M to 4M. Physical properties (i.e., pore size, specific surface area and total pore volume) of the synthesized mesoporous silica were also evaluated as a function of NaOH concentration via BET, SEM, TEM and small-angle X-ray scattering analyses. Over the entire range of NaOH concentration investigated (i.e., 1-4M), the synthesized mesoporous materials were determined to be SBA-15, which exhibited a hexagonal structure with the pore size of approximately 7 nm. On the other hand, specific surface area and total pore volume increased with NaOH concentration up to 3M while the values decreased at 4M, indicating that the optimal NaOH concentration for the synthesized mesoporous silica was approximately 3M. Further comparison analysis between two conditions (3M versus 4M) showed that the decrease in two physical properties at 4M NaOH concentration was likely due to the potential inhibition by excess Na ions on the formation of mesophase and the consequent increase of pore wall thickness by remaining Si ions.

생활 폐기물 소각재 슬래그를 출발원료로한 메조포러스 실리카의 합성에 미치는 NaOH 영향에 대해 조사하였다. 기계적 분쇄를 통해 활성화된 소각재 슬래그에 대한 추출 공정은 농도가 다른 NaOH 용액을 이용한 알칼리 처리로 수행하였다. 분쇄시간 그리고 NaOH 용액 농도가 증가 할수록 소각재 슬래그로부터 추출되는 Si 추출량은 증가하였다. 합성된 메조포러스 실리카의 물리적 특성(기공크기, 비표면적 그리고 총 기공부피)은 BET, SEM, TEM 그리고 small-angle XRD 분석을 통하여 평가하였다. 합성된 메조포러스 실리카는 대략 7 nm 기공크기의 hexagonal 구조를 가진 SBA-15로 판명되었다. NaOH 용액 농도가 증가됨에 따라 합성된 메조포러스 실리카는 비표면적 및 기공 부피도 증가하였다. 반면, 거의 동일한 Si 이온 농도로 제조된 메조포러스 실리카의 경우, 3M NaOH로 제조된 샘플에 비해 4M NaOH로 제조된 샘플의 비표면적 및 기공 부피가 감소하였다. 이는 과량의 Na 이온이 mesophase 형성을 방해하여 미반응되어 남아있는 Si 이온이 합성되어진 mesophase의 벽 두께를 증가시키는 것으로 확인되었다.

Keywords

References

  1. C. T. Kresge, et al., 1992: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, pp. 710-712. https://doi.org/10.1038/359710a0
  2. A. Tarafdar, and P. Pramanik, 2006: Synthesis of amino-functionalized mesoporous silica-zirconia mixed oxide using sodium silicate and zirconium carbonate complex, Micropor. Mesopor. Mater., 91, 221-224, 2006. https://doi.org/10.1016/j.micromeso.2005.11.045
  3. S. Shylesh, et al., 2009: Catalytic Meerwein-Ponndorf-Verley reductions over mesoporous silica supports: Rational design of hydrophobic mesoporous silica for enhanced stability of aluminum doped mesoporous catalysts, J. Mol. Catal. A Chem, 301, pp. 118-126. https://doi.org/10.1016/j.molcata.2008.11.020
  4. F. Wang, J. Yang, and K. Wu, 2009: Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol, A, Anal. Chim. Acta, 638, pp. 23-28. https://doi.org/10.1016/j.aca.2009.02.013
  5. J. Liu, et al., 2007: Pore size control of mesoporous silicas from mixtures of sodium silicate and TEOS, Micropor. Mesopor. Mater., 106, pp. 62-67. https://doi.org/10.1016/j.micromeso.2007.02.045
  6. M. C. Chao, et al., 2005: Controlling the crystal morphology of mesoporous silica SBA-1, Micropor. Mesopor. Mater., 83, pp. 269-276. https://doi.org/10.1016/j.micromeso.2005.05.007
  7. S. Habib, et al., 2008: High catalytic cracking activity of AI-MCM-41 type materials prepared from ZSM-5 zeolite crystals and fumed silica, Appl. Catal. A: Gen, 344, pp. 61-69. https://doi.org/10.1016/j.apcata.2008.04.001
  8. C. Jo, K. Kim, and R. Ryoo, 2009: Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution, Micropor. Mesopor. Mater., 124, pp. 45-51. https://doi.org/10.1016/j.micromeso.2009.04.037
  9. J. Park, J. Park, and H. Shin, 2007: The preparation of Ag/mesoporous silica by direct siliver redution and Ag/functionalized mesoporous silica by in situ formation of adsorbed silver, Mater. Lett., 61, pp. 156-159. https://doi.org/10.1016/j.matlet.2006.04.118
  10. G. Chandrasekar, et al., 2008: Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash, Micropor. Mesopor. Mater., 111, pp. 455-462. https://doi.org/10.1016/j.micromeso.2007.08.019
  11. H. Yu, X. Xue, and D. Huang, 2009: Synthesis of mesoporous silica materials(MCM-41) from iron ore tailings, Materials Research Bulletin, 44, pp. 2112-2115. https://doi.org/10.1016/j.materresbull.2009.07.003
  12. D. W. Cha, 1999: The status of Fly Ash and FGD-Gypsum recycling of KEPCO, High-performance Concrete International Workshop, Seoul, Korea.
  13. R. Cortez, et al., 1996: Laboratory scale thermal plasma arc vitrification studies of havey metal-laden waste, J. Air Waste Manage. Assoc., 46, pp. 1075-1080. https://doi.org/10.1080/10473289.1996.10467543
  14. M. Halina, et al., 2007: Processing of mesoporous silica materials (MCM-41) from coal fly ash, J. Mater. Process. Tech., 186, pp. 8-13. https://doi.org/10.1016/j.jmatprotec.2006.10.032
  15. M. Halina, et al., 2007: Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash, Mater. Chem. Phys., 101, pp. 344-351. https://doi.org/10.1016/j.matchemphys.2006.06.007
  16. P. Kumar, et aI., 2001: Mesoporous materials prepared using coal fly ash as the silicon and aluminium source, J. Mater. Chem., 11, pp. 3285-3290. https://doi.org/10.1039/b104810b
  17. K. L. Lin, 2006: Feasibility study of using brick made from municipal solid waste incinerator fly ash slag, J. Hazard. Mater., 137, pp. 1810-1816. https://doi.org/10.1016/j.jhazmat.2006.05.027
  18. R. Anuwattana, and P. Khummongkol, 2009: Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge, J. Hazard. Mater., 166, pp. 227-232. https://doi.org/10.1016/j.jhazmat.2008.11.020
  19. G. Cao, 2004: Nanostructures & nanomaterials: synthesis, properties & applications, Imperial College Press, London, Uk.
  20. M. Gross, et al., 2007: Synthesis of faujasite from coal fly ashes under smooth. temperature and pressure conditions: A cost saving process, Micropor. Mesopor. Mater., 104, pp. 67-76. https://doi.org/10.1016/j.micromeso.2007.01.006
  21. M. M. Ristic, and S. Milosevic, 1998: Mechanical Activation of Inorganic Materials, Monographs of SANU, Belgrade, Serbia.
  22. J.F. Fernandez-Bertran, 1999: Mechanochemistry: an overview, Pure Appl. Chem., 71, pp. 581-586. https://doi.org/10.1351/pac199971040581
  23. C. Li, B. Liang, and H. Wang, 2008: Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite, Hydrometallurgy, 91, pp. 121-129. https://doi.org/10.1016/j.hydromet.2007.11.013
  24. C. Brinker, et al., 1999: Evaporation-induced self-assembly: Nanostructures made easy, Adv. Mater., 11, pp. 579-585. https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  25. M. Gornez-Cazalilla, et al., 2007: Characterization and acidic properties of AI-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica, J. Solid State Chem., 180, pp. 1130-1140. https://doi.org/10.1016/j.jssc.2006.12.038
  26. H. Shigemoto, H. Hayashi, and K. Miyaura, 1993: Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction, J. Mater. Sci., 28, pp. 4781-4786. https://doi.org/10.1007/BF00414272
  27. H. Chang, et al., 1999: Conversion of fly ash into mesoporous aluminosilicate, Ind. Eng. Chem. Res., 38, pp. 973-977. https://doi.org/10.1021/ie980275b