DOI QR코드

DOI QR Code

Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine- Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization

고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도

  • Kim, Haseung (Department of Polymer Engineering, The University of Suwon) ;
  • Na, Hyo Yeol (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Jong Heon (Sonix System, Co., Ltd., Business Incubation Center, The University of Suwon) ;
  • Lee, Seong Jae (Department of Polymer Engineering, The University of Suwon)
  • 김하승 (수원대학교 공과대학 신소재공학과) ;
  • 나효열 (수원대학교 공과대학 신소재공학과) ;
  • 이종헌 ((주)소닉스시스템) ;
  • 이성재 (수원대학교 공과대학 신소재공학과)
  • Received : 2014.07.09
  • Accepted : 2014.09.27
  • Published : 2015.03.25

Abstract

Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to $10^{-3}S/m$.

전기 전도성을 갖는 발포체를 개발하기 위해 고내상 에멀젼(HIPE) 중합법으로 폴리스티렌(PS)/폴리도파민-탄소나노튜브(PDA-CNT) 미세기공 발포체를 제조하여 발포체의 모폴로지 및 전기 전도도를 고찰하였다. 전도성을 부여하기 위한 나노충전제로 CNT를 사용하였는데 수분산성과 HIPE의 안정성을 향상시키기 위하여 CNT 표면을 친수성인 PDA로 개질한 PDA-CNT를 사용하였다. PDA-CNT는 분산성이 우수하여 첨가량을 높여 HIPE를 구성할 수 있었고 전도성이 향상된 발포체를 제조할 수 있었다. 제조한 미세기공 발포체는 기공이 상호 연결된 구조의 모폴로지를 보여 주었다. PDA-CNT의 함량 증가에 따라 HIPE의 항복응력 및 저장 탄성률은 증가하였고 제조된 발포체의 기공 크기는 작아졌다. 전기적 임계점을 보여주는 PDA-CNT 함량은 대략 0.58 wt%였고 PDA-CNT 함량을 5 wt% 첨가했을 때의 전기 전도도는 $10^{-3}S/m$를 나타내었다.

Keywords

Acknowledgement

Supported by : 한국연구재단(NRF), 중소기업청

References

  1. N. R. Cameron, P. Krajnc, and M. S. Silverstein, "Colloidal Templating", in Porous Polymers, M. S. Silverstein, N. R. Cameron, and M. A. Hillmyer, Editors, John Wileys & Sons, Inc., Hoboken, Chap. 4, p. 120 (2011).
  2. N. R. Cameron, Polymer, 46, 1439 (2005). https://doi.org/10.1016/j.polymer.2004.11.097
  3. Z. Bhumgara, Filtr. Separat., 32, 245 (1995). https://doi.org/10.1016/S0015-1882(97)84048-7
  4. P. Krajnc, D. Stefanec, J. F. Brown, and N. R. Cameron, J. Polym. Sci., Part A: Polym. Chem., 43, 296 (2005).
  5. E. Ruckenstein and X. B. Wang, Biotechnol. Bioeng., 44, 79 (1994). https://doi.org/10.1002/bit.260440112
  6. S. J. Pierre, J. C. Thies, A. Dureault, N. R. Cameron, J. C. M. van Hest, N. Carette, T. Michon, and R. Weberskirch, Adv. Mater., 18, 1822 (2006). https://doi.org/10.1002/adma.200600293
  7. R. J. Wakeman, Z. G. Bhumgara, and G. Akay, Chem. Eng. J., 70, 133 (1998). https://doi.org/10.1016/S0923-0467(98)00088-8
  8. M. A. Bokhari, G. Akay, S. G. Zhang, and M. A. Birch, Biomaterials, 26, 5198 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.040
  9. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  10. M. M. J. Treacy, T. W. Ebessen, and J. M. Gibson, Nature, 381, 678 (1996). https://doi.org/10.1038/381678a0
  11. J. I. Lee and H. T. Jung, Korean Chem. Eng. Res., 46, 7 (2008).
  12. Z. Yao, N. Braidy, G. A. Botton, and A. Adronov, J. Am. Chem. Soc., 125, 16015 (2003). https://doi.org/10.1021/ja037564y
  13. J. Y. Shin, T. Premkumar, and K. E. Geckeler, Chem. Eur. J., 14, 6044 (2008). https://doi.org/10.1002/chem.200800357
  14. S. Bose, R. A. Khare, and P. Moldenaers, Polymer, 51, 975 (2010). https://doi.org/10.1016/j.polymer.2010.01.044
  15. C. A. Martin, J. K. W. Sandler, A. H. Windle, M. K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer, Polymer, 46, 877 (2005). https://doi.org/10.1016/j.polymer.2004.11.081
  16. A. B. Sulong, C. H. Azhari, R. Zulkifli, M. R. Othman, and J. Park, Eur. J. Sci. Res., 33, 295 (2009).
  17. Y. Wang, J. Wu, and F. Wei, Carbon, 41, 2939 (2003). https://doi.org/10.1016/S0008-6223(03)00390-7
  18. A. Postma, Y. Yan, Y. Wang, A. N. Zelikin, E. Tjipto, and F. Caruso, Chem. Mater., 21, 3042 (2009). https://doi.org/10.1021/cm901293e
  19. Y. Liao, B. Cao, W. C. Wang, L. Zhang, D. Wu, and R. Jin, Appl. Surface Sci., 255, 8207 (2009). https://doi.org/10.1016/j.apsusc.2009.05.038
  20. H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, Science, 318, 426 (2007). https://doi.org/10.1126/science.1147241
  21. F. Yu, S. Chen, Y. Chen, H. Li. L. Yang, Y. Chen, and Y. Yin, J. Mol. Struct., 982, 152 (2010). https://doi.org/10.1016/j.molstruc.2010.08.021
  22. C. Shi, C. Deng, X. Zhang, and P. Yang, ACS Appl. Mater. Interfaces, 5, 7770 (2013). https://doi.org/10.1021/am4024143
  23. Y. Jiang, Y. Lu, L. Zhang, L. Liu, Y. Dai, and W. Wang, J. Nanopart. Res., 14, 938 (2012). https://doi.org/10.1007/s11051-012-0938-x
  24. S. Chen, Y. CaO, and J. Feng, ACS Appl. Mater. Interfaces, 6, 349 (2014). https://doi.org/10.1021/am404394g
  25. W. Lee, J. U. Lee, B. M. Jung, J. H. Byun, J. W. Yi, S. B. Lee, and B. S. Kim, Carbon, 65, 296 (2013). https://doi.org/10.1016/j.carbon.2013.08.029
  26. W. J. Noh, M. H. Kang, and S. J. Lee, Polymer(Korea), 36, 579 (2012).
  27. H. P. Grace, Chem. Eng. Commun., 14, 225 (1982). https://doi.org/10.1080/00986448208911047
  28. M. C. Hermant, B. Klumperman, and C. E. Koning, Chem. Commun., 2738 (2009).
  29. H. M. Princen and A. D. Kiss, J. Colloid Interface Sci., 128, 176 (1989). https://doi.org/10.1016/0021-9797(89)90396-2
  30. G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006). https://doi.org/10.1016/j.polymer.2005.11.028