최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식 등 다양한 비전 분야에서 우수한 성능을 보여주고 있으나, CNN 모델의 계산량 및 메모리가 매우 커짐에 따라 모바일 또는 IoT(lnternet of Things) 장치와 같은 저전력 환경에 적용되기에는 제한이 따른다. 따라서, CNN 모델의 임무 성능을 유지하연서 네트워크 모델을 압축하는 기법들이 연구되고 있다. 본 논문에서는 행렬 분해 기술인 저계수행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합하여 CNN 모델을 압축하는 기법을 제안한다. 제안하는 기법은 계층의 유형에 상관없이 하나의 행렬분해 기법만을 적용하는 기존의 기법과 달리 압축 성능을 높이기 위하여 CNN의 계층 타입에 따라 두 가지 분해 기법을 선택적으로 적용한다. 제안기법의 성능검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델 압축에 적용하였고, 모델의 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수행렬 근사 기법만 적용한 경우 보다 1.5~12.1 배의 동일한 압축율에서 분류 성능이 향상됨을 확인하였다.
본 연구는 실측 잔향음 자료에서 나타나는 단주기적 시변동성 신호 간섭 (interference)을 억제하기 위해 Ecart-Young 이론을 토대로 자료 행렬로부터 낮은 계수를 추출하여 근사화하는 낮은 계수 근사법 (LRA: Low Rank Approximation) 기법을 제안하였다. 이 기법을 실측 자료에 적용한 결과, 잔향음 신호와 시변동성 신호가 분리되었으며 이때 적절한 낮은 계수를 추출키 위해서 특이치 분해법 (SVD: Singular Value Decomposition)이 사용되었다. 잔향음 신호의 억제는 LRA를 통해 얻어진 근사치와 실측치 사이의 잔차를 계산함으로써 수행하였으며 결과적으로 LRA을 이용하여 시간적으로 안정적인 잔향음 신호를 획득함으로써 능동 소오나 시스템 운용 및 잔향음 모델링시 적용 가능성을 제시하였다.
SOQPSK-TG는 주파수 효율과 전력 효율이 매우 우수한 항공기 텔레메트리용 변조신호이다. 본 논문에서는 부분응답 SOQPSK-TG 변조방식의 위상파형을 선형 근사하여 완전응답 이중 듀오바이너리 SOQPSK(SOQPSK-DD) 신호로 모델링하였다. 그리고 XTCQM 기법과 롤랑분해 기법을 사용하여 SOQPSK-DD 신호를 선형 펄스 파형을 갖는 OQPSK로 근사 모델링하였고 두 가지 기법의 결과가 동일함을 증명하였다. 또한 SOQPSK-DD 신호의 로랑분해 파형이 SOQPSK-TG 신호의 로랑분해 파형을 근사한 파형임을 확인하였고, SOQPSK-DD의 로랑분해 파형을 검출필터에 적용한 결정궤환 IQ-검출기가 기존보다 단순한 파형으로도 거의 동일한 성능을 발휘함을 보였다.
최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식, 화질 개선 등 다양한 비전 분야에서 우수한 성능을 보여주고 있다. 그러나 많은 메모리와 계산량이 요구되어 모바일 또는 IoT(Internet of Things) 장치와 같은 저전력 디바이스에 적용하기에는 제한이 따른다. 이에, CNN 모델의 임무 성능을 유지하면서 네트워크 모델을 압축하는 연구가 진행되고 있다. 본 논문에서는 행렬 분해 기술인 저계수 행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합한 CNN 모델 압축 기법을 제안한다. 제안기법은 하나의 행렬 분해 기법만을 적용하는 기존의 기법과 달리 CNN의 계층 유형에 따라 두 가지 분해 기법을 선택적으로 적용하여 압축 성능을 높인다. 제안기법의 성능 검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델을 압축하였고, 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수 행렬 근사 기법만 적용한 경우 보다 1.5 ~ 12.1 배의 동일한 압축률에서 분류 성능이 향상됨을 확인하였다.
강상판교는 부재수가 많고 구조적 거동이 복잡하여 재래적인 단일수준 (CSL) 알고리즘을 이용하여 최적화하는 것이 매우 어렵기 때문에 본 연구에서는 강상판교를 효율적으로 최적화하기 위해 다단계 최적설계 (MLDS) 알고리즘이 제안되었다. 강상판교를 주형과 강상판으로 나누기 위해 등위법이 사용되었고, 시스템 최적화를 위하여 설계 변수를 줄이는 분해법이 사용되었다. 효율적인 최적설계를 위해 다단계 최적설계 알고리즘은 제약조건 소거기법(Constraint Deletion)과 응력 재해석 같은 근사화 기법을 도입하였다. 변위해석을 위한 제약조건 소거기법은 교량의 최적화에 효율적인 것으로 검증되었고, 제안된 응력 재해석 기법 또한 설계민감도 해석을 필요로 하지 않으므로 매우 효율적이다. MLDS 알고리즘의 적용성과 강건성은 다양한 수치예제를 사용하여 기존의 단일수준 알고리즘과 비교하였다.
비압축성 점성 흐름을 수치해석하기 위한 효율적인 대각행렬화된 근사 인수분해(DAF) 알고리즘을 개발하였다. 압력에 근거한 인공압축성(AC) 기법을 이용하여 3차원 정상 비압축성 Navier-Stokes 방정식을 계산한다. AC 형태로 변형된 지배방정식은 2차 정확도의 유한차분법을 이용하여 공간에 대해서 이산화하였다. 이산화된 방정식계를 2차 정확도로 분할하기 위해서 본 연구에서 개발한 DAF 기법을 적용한다. 이 연구의 목적은 이 DAF 기법의 계산상 효율성을 검토하는 것이다. 만곡부를 갖는 사각형 덕트에서 완전히 발달한 층류 흐름과 발달하는 층류흐름 그리고 공동에서의 층류흐름에 대한 DAF 기법의 해석결과를 잘 알려진 4단계 Runge-Kutta(RK4)기법에 의한 해석해와 상대적으로 비교평가 하였다. 공간에 대해서 동일한 이산화기법을 이용하므로 동일한 격자상에서 계산된 DAF기법과 RK4기법의 해는 근본적으로 동일한 반면에, 이들 두기법의 계산상 효율성은 확연히 다른 것으로 나타났다. 본 연구에서 개발된 DAF기법은 적용한 모든 흐름 문제에 대해서 RK4기법에 비해 최소 2배 이상 적은 계산 시간만을 필요로 하는 것으로 나타났다. 이러한 DAF 기법의 계산상 효율성은 계산용량의 추가나 프로그래밍의 추가적인 복잡함이 없이 확보된다.
적절한 근사화 과정을 통하여 구축된 축소 시스템은 전체 시스템의 거동을 적은 수의 정보를 통하여 효과적으로 표현할 수 있다. 효과적인 시스템 축소를 위하여 본 연구에서는 주파수 영역 Karhunen-Loeve (Frequency-domain Karhunen-Loeve, FDKL) 기법과 시스템 등가 확장 축소 과정(System equivalent expansion reduction process, SEREP)을 연동한 축소 기법을 제안한다. 적합직교분해(Proper orthogonal decomposition)의 한 방법인 FDKL기법을 통하여 최적모드(Optimal mode)를 구하고 이에 SEREP을 적용하여 자유도 변환 행렬을 구한다. 이때 주자유도 선정은 2단계 축소기법을 적용한다. 최종적으로 제안된 기법은 수치예제를 통하여 검증한다.
본 연구에서는 두 변수 유리함수 근사법에 기반한 3차원 음향 포물선 방정식의 제곱근 연산자의 새로운 근사식을 제안한다. 이 근사식은 기존의 제곱근 연산자에 대한 근사 연구와 비교해서 두 가지의 장점을 가진다. 첫 번째는 광대역 각도 능력이다. 제안된 식은 방위각 $45^{\circ}$에서 3차원 음향 포물선 방정식의 거리 축으로부터 $62^{\circ}$까지 넓은 각도에 대해 정확도를 가지는데, 이 값은 기존에 연구된 3차원 음향 포물선 방정식 알고리즘의 각도 한계의 약 세 배이다. 두 번째로는 본 근사식의 분모는 수심과 횡 거리에 대한 연산자의 곱으로 표현된다는 점이다. 이러한 분할 형태는 3차원 포물선 방정식을 손쉽게 삼중대각행렬 방정식으로 변환할 수 있다는 점에서 수치해석에서 선호된다. 제안된 식의 성능을 검증하기 위해 위상 오차분석을 통해 타 근사법과의 비교 연구가 수행되었고, 제안된 방법은 가장 우수한 성능을 보였다.
컴뮤트 타임 임베딩을 구현하려면 그래프 라플라시안 행렬의 고유값과 고유벡터를 구하여야 하는데, $o(n^3)$의 계산량이 요구되어 대용량 데이터에는 적용하기 어려운 문제가 있다. 이를 줄이기 위하여 표본화 과정을 통하여 크기가 줄어든 그래프 라플라시안 행렬에서 구한 다음, 원래의 고유값과 고유벡터를 근사화시키는 Nystr${\ddot{o}}$m 기법을 주로 채택한다. 이 과정에서 많은 오차가 발생하는데, 이를 개선하기 위하여 본 논문에서는 그래프 라플라시안 대신에 가중치 행렬을 표본화하고 이로부터 구한 고유값과 고유벡터를 그래프 라플라시안의 고유값과 고유벡터로 변환하는 기법을 이용하여 대용량 데이터로 구성된 스펙트럴 그래프를 근사적으로 컴뮤트 타임 임베딩하는 기법을 제안한다. 하지만, 이 방식도 스펙트럼 분해를 계산하여야 하므로 데이터의 크기가 증가하면 적용하기 어려운 문제가 발생한다. 이의 대안으로, 스펙트럼 분해를 계산하지 않고도 데이터 집합의 크기에 영향을 받지 않으면서 컴뮤트 타임을 근사적으로 계산하는 방식을 구현하고 이들의 특성을 실험적으로 분석한다.
분해기법은 일 단위 강수시계열 자료를 시간단위로 분해하는 데 주로 사용되고 있으며, 시단위 자료는 홍수예측을 위하여 주요하게 사용될 수 있다. 그러나 현재까지 제시된 대부분의 분해기술은 강우데이터가 추계학적 특성을 가지고 있다는 기본 가정을 전제로 하고 있기 때문에 모형을 구성하는데 있어서 강우자료의 물리적 특성을 반영하는 데는 한계를 보이고 있다. 이에 본 연구에서는 강우자료를 각기 다른 해상도로 변환하는데 따른 가중치의 동역학적 거동이 카오스 특성을 보이는지와 카오스적 분해가 가능한지를 비선형의 확정론적 방법(카오스이론)을 이용하여 규명하는 방안을 소개하였다. 우선, 기상청 산하 서울지점을 대상으로 24h-12h, 12h-6h, 6h-3h으로 해상도를 변환하는데 따른 가중치를 계산하여 사용하였다. 가중치 시계열자료의 카오스 특성을 규명하는 데는 상관차원방법을 이용하였으며, 부분근사화 기법을 이용하여 강우를 분해하였다. 서울 지점의 모든 해상도 변환에 따른 가중치는 저차원의 상관 차수를 가지는 카오스 특성을 보임을 확인하였으며, 분해결과 실제 관측치와 유사한 값을 보임을 확인하였다(높은 상관계수와 작은 평균제곱근오차를 보임). 또한 강우의 일반적인 경향성(총량, 강우의 발생 시점)은 보존되나 극값의 경우 대부분 과소 추정됨을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.