References
- Beam, R. and Warming, R.F. (1978) An implicit scheme for the compressible Navier Stokes equations, AIAA J., Vol. 16, No. 4, pp. 393-402. https://doi.org/10.2514/3.60901
- Brandt, A. (1980) Multilevel adaptive computations in fluid dynamics, AIAA J. Vol. 18, No. 10, pp. 1165-1172. https://doi.org/10.2514/3.50867
- Briley, W.R. and McDonald, H. (2001) An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization, Computer and Fluids, Vol. 30, No. 7-8, pp. 807-828. https://doi.org/10.1016/S0045-7930(01)00030-5
- Chorin, A. (1967) A numerical method for solving incompressible viscous flow problems. J. of Comput. Phys., Vol. 2, pp. 12-26. https://doi.org/10.1016/0021-9991(67)90037-X
- Dukowicz, J.K. and Dvinsky, A.S. (1992) Approximate Factorization as a high order splitting for the implicit incompressible flow equations, J.of Comput. Phys., Vol. 102, pp. 336-347. https://doi.org/10.1016/0021-9991(92)90376-A
- Ekaterinaris, J.A. (2004) High-order accurate numerical solutions of incompressible flows with the artificial compressibility method, Int. J. Numer. Methods Fluids, Vol. 45, No. 11, pp. 1187-1207. https://doi.org/10.1002/fld.727
- Govindan, T. R., Briley W. R. and McDonald, H. (1991) General three dimensional viscous primary/secondary flow analysis, AIAA J., Vol. 29, pp. 361-370. https://doi.org/10.2514/3.10587
- Haelterman, R., Vierendeels, J., and Van Heule, D. (2009) A generalization of the Runge-Kutta iteration, J. of Comput. Appl. Math., Vol. 224, No. 1, pp. 152-167. https://doi.org/10.1016/j.cam.2008.04.021
- Humphrey, J.A.C., Taylor, A.M.K., and Whitelaw, J.H. (1977) Laminar flow in a square duct of strong curvature. J. Fluid Mech., Vol. 83, pp. 509-527. https://doi.org/10.1017/S0022112077001311
- Jameson, A. (1986) Multigrid algorithms for compressible flow calculations, Second European Conference on Multigrid Methods, Report MAE 1743, Princeton University, NJ.
- Jameson, A., Schmidt, W., and Turkel, E. (1981) Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper 81-1259, 1981.
- Khangaonkar, T., Yang, Z., Paik, J., and Sotiropoulos, F. (2008) Simulation of hydrodynamics at stratified reservoirs using a staged modeling approach. J. of Coastal Research, Vol. SI52, pp. 79-86.
- Lin, F.B. and Sotiropoulos, F. (1997) Assessment of artificial dissipation models for three-dimensional incompressible flow solutions. J. of Fluids Eng., Vol. 119, No. 2, pp. 331-340. https://doi.org/10.1115/1.2819138
- Merkle, C.L. and Tsai, P.Y.-L. (1986) Application of Runge-Kutta schemes to incompressible flows. AIAA Paper 86-0553.
- Paik, J., Sotiropoulos F., and Sale, M.J. (2005) Numerical simulation of swirling flow in a complex hydro-turbine draft tube using unsteady statistical turbulence models. ASCE J. of Hydraulic Eng. Vol. 131, No. 6, pp. 441-456. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(441)
- Paik, J., Escauriaza, C., and Sotiropoulos, F. (2010) Coherent structure dynamics in turbulent flows past in-stream structures: some insights gained via numerical simulation, ASCE J.of Hydrau. Eng., Vol. 136, No. 12, pp. 981-993. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000089
- Prasad, A.K. and Koseff, J.R. (1989) Reynolds number and endwall effects on a lid-driven cavity flow, Physics of Fluids, Vol. 1, No. 2, pp. 208-218. https://doi.org/10.1063/1.857491
- Rogers, S., Kwak, D., and Kiris, C. (1991) Steady and unsteady solutions of the incompressible Navier-Stokes equations. AIAA J. Vol. 29, No. 4, pp. 603-610. https://doi.org/10.2514/3.10627
- Rogers, S. (1995) Comparison of implicit schemes for the incompressible Navier-Stokes equations. AIAA J. Vol. 33, pp. 2066-2072. https://doi.org/10.2514/3.12948
- Sotiropoulos, F., Kim, W.J., and Patel, V.C. (1994) A computational comparison of two incompressible Navier-Stokes solvers in three-dimensional laminar flows, Computers & Fluids, Vol. 23, No. 4, pp. 627-646. https://doi.org/10.1016/0045-7930(94)90056-6
- Swanson, R.C., Turkel, E., and Rossow, C.C. (2007) Convergence acceleration of Runge-Kutta schemes for solving the Navier- Stokes equations, J. of Comput. Phys., Vol. 224, No. 1, pp. 365-388. https://doi.org/10.1016/j.jcp.2007.02.028
- Tamamidis, P., Zhang, G., and Assanis, D.N. (1996) Comparison of pressure-based and artificial compressibility methods for solving 3D steady incompressible viscous flows. J. of Comput. Phys., Vol. 124, pp. 1-13. https://doi.org/10.1006/jcph.1996.0041
- Tang, H.S., Paik, J. Sotiripoulos, S., and Khangaonkar, T. (2008) Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations. ASCE J. of Hydraul. Eng., Vol. 134, No. 9, pp. 1210-1224. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1210)
- Taylor, A.M.K.P., Whitelaw, J.H., and Yianneskis, M. (1982) Curved ducts with strong secondary motion: Velocity measurements of developing laminar and turbulent flow, J. of Fluid Eng., Vol. 104, pp. 350-359. https://doi.org/10.1115/1.3241850
- Yang, J.Y., Yang, S.C., Chen, Y.N., and Hsu, C.A. (1998) Implicit weighted ENO schemes for three-dimensional incompressible Navier-Stokes equations. J. of Comput. Phys. Vol. 146, pp. 464-487. https://doi.org/10.1006/jcph.1998.6062
- White, F.M. (2005) Viscous Fluid Flow, McGraw-Hill Science, New York.